Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1954, 19, 238-240
https://doi.org/10.1135/cccc19540238

Eine neue Form der Quecksilbertropfelektrode

I. Smoler

Crossref Cited-by Linking

  • Cibulka Radek, Císařová Ivana, Ondráček Jan, Liška František, Ludvík Jiří: Electrochemical Reductions of Ni2+, Cu2+ and Zn2+ Complexes of Azinyl Methyl Ketoximes on Mercury. Collect. Czech. Chem. Commun. 2001, 66, 170. <https://doi.org/10.1135/cccc20010170>
  • Privman Marina, Zuman Petr: The role of protonation, hydration, elimination, and ring opening in the electroreduction of hexazinone. Journal of Electroanalytical Chemistry 1998, 455, 235. <https://doi.org/10.1016/S0022-0728(98)00277-0>
  • Baars A., Sluyters-Rehbach M., Sluyters J.H.: Application of the dropping mercury microelectrode (DMμE) in electrode kinetics and electroanalysis. Journal of Electroanalytical Chemistry 1994, 364, 189. <https://doi.org/10.1016/0022-0728(93)02918-8>
  • Baars A., Sluyters-Rehbach M., Sluyters J.H.: A dropping mercury microelectrode (DMμE) for the direct determination of surface charge densities. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1990, 283, 99. <https://doi.org/10.1016/0022-0728(90)87382-T>
  • Kuik M., Krassowski K., Czerniak A.: 346 — Correlation between the SH group content of bovine or human haemoglobin and polarographic catalytic currents. Bioelectrochemistry and Bioenergetics 1981, 8, 141. <https://doi.org/10.1016/0302-4598(81)85015-5>
  • Kuik M., Krassowski K., Czerniak A.: Correlation between the SH group content of bovine or human haemoglobin and polarographic catalytic currents. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1981, 128, 141. <https://doi.org/10.1016/S0022-0728(81)80195-7>
  • Pungor Ernö, Fehér Zsófia, Váradi Mária, Campbell Bruce H.: Hydrodynamic Voltammetry. C R C Critical Reviews in Analytical Chemistry 1980, 9, 97. <https://doi.org/10.1080/10408348008542718>
  • Michel L., Zatka A.: An electrochemical detector with a dropping mercury electrode for high-performance liquid chromatography. Analytica Chimica Acta 1979, 105, 109. <https://doi.org/10.1016/S0003-2670(01)83742-9>
  • Schluter Duane N., Miller F.J., Wigler Paul W., Chambers James Q.: Electrochemical reduction of ammonium 5-bromo-2′-deoxyuridine-5′-methylphosphonate: an inhibitor of cell growth. Electrochimica Acta 1978, 23, 467. <https://doi.org/10.1016/0013-4686(78)87048-0>
  • Kolthoff I.M., Sawamoto H., Kihara S.: Catalytic currents of albumin at the hanging mercury drop electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1978, 88, 233. <https://doi.org/10.1016/S0022-0728(78)80270-8>
  • Schluter D.N., Biegler T., Brown E.V., Bauer H.H.: Electrolytic reduction of 3-cyanoquinoline. Electrochimica Acta 1976, 21, 753. <https://doi.org/10.1016/0013-4686(76)85006-2>
  • Jee R.D.: Resistance effects in phase sensitive fundamental harmonic a.c. polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1976, 69, 109. <https://doi.org/10.1016/S0022-0728(76)80243-4>
  • Christie Joseph H., Jackson Larry L., Osteryoung Robert A.: Alternate drop pulse polarography. Anal. Chem. 1976, 48, 242. <https://doi.org/10.1021/ac60366a002>
  • Kolthoff I.M., Yamashita K., Hie Tan Boen, Kanbe A.: Brdička currents observed with bovine serum albumin in tris and borate buffers. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1975, 58, 375. <https://doi.org/10.1016/S0022-0728(75)80095-7>
  • Wasa Tamotsu, Musha Soichiro: A Polarographic Cell for the Continuous Monitoring of Column Effluents and Its Application to the Determination of Nitropyridine Derivatives. Bulletin of the Chemical Society of Japan 1975, 48, 2176. <https://doi.org/10.1246/bcsj.48.2176>
  • Schub J.M., Lemoine P., Gross M.: Contribution a l'etude de la reduction polarographique de l'anion Re3Cl123−. Electrochimica Acta 1973, 18, 767. <https://doi.org/10.1016/0013-4686(73)85027-3>
  • Kalvoda R., Anstine W., Heyrovský M.: Polarographic analysis of solutions containing adsorbable complexes. Analytica Chimica Acta 1970, 50, 93. <https://doi.org/10.1016/S0003-2670(00)80930-7>
  • Kolthoff Izaak M., Mader Pavel.: Diffusion controlled polarographic catalytic hydrogen (Brdicka) currents in systems containing cobalt(II), cysteine-like compounds, and alkaline buffers. Anal. Chem. 1970, 42, 1762. <https://doi.org/10.1021/ac50160a047>
  • Scarano Elio., Bonicelli M. G., Forina Michele.: Cell for continuous analysis in flowing solutions with the rapidly dropping mercury electrode. Anal. Chem. 1970, 42, 1470. <https://doi.org/10.1021/ac60294a023>
  • Scarano E., Forina M., Bonicelli M.G., Mio§cu M.: The behaviour of the rapidly dropping L-shaped Smoler electrode in the reduction of H+. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1969, 21, 279. <https://doi.org/10.1016/S0022-0728(69)80096-3>
  • Mader P., Kolthoff I. M.: Kinetic waves in systems containing cobalt(II) and cysteine-like compounds. Adsorption phenomena in the cystamine-cobalt(II) system in borax medium. Anal. Chem. 1969, 41, 932. <https://doi.org/10.1021/ac60276a009>
  • Kolthoff Izak M., Mader P.: Kinetic waves in systems containing cobalt(II) and cysteine-like compounds. Polarographic catalytic hydrogen waves in acid solutions of mercaptoanilines in the presence of cobalt(II) or -(III). Anal. Chem. 1969, 41, 924. <https://doi.org/10.1021/ac60276a010>
  • Raaen Helen P.: Vertical-Orifice Dropping Mercury Electrode of Polytetrafluoroethylene for Rapid Polarography in Glass-Corroding Media†. Instrumentation Science & Technology 1969, 1, 287. <https://doi.org/10.1080/10739146908543254>
  • Stelzner R. W.: The Design of Measuring Circuits for a DC Polarograph. Instrumentation Science & Technology 1969, 2, 213. <https://doi.org/10.1080/10739146908543279>
  • Kolthoff I.M., Mader P., Khalafalla S.E.: Kinetic waves in systems containing cobalt(II) and cysteine-like compounds. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1968, 18, 315. <https://doi.org/10.1016/S0022-0728(68)80262-1>
  • Fisher D. J., Belew W. L., Kelley M. T.: A Controlled-Potential and Derivative DC Polarograph for Regular and First and Second Derivative DC Polarography: Circuits, Theory, and Performance Characteristics. Advantages of Rapid and Derivative DC Polarography†. Instrumentation Science & Technology 1968, 1, 181. <https://doi.org/10.1080/10739146808543248>
  • Shults W. D., Fisher D. J., Jones H. C., Kelley M. T., Schaap W. B.: Controlled-potential differential DC polarography. Z. Anal. Chem. 1966, 224, 1. <https://doi.org/10.1007/BF00502630>
  • Belew W.L., Fisher D.J., Kelley M.T., Dean J.A.: Determination of trace quantities of uranium by controlled-potential DC polarography in a tri-n-octylphosphine oxide extract. Microchemical Journal 1966, 10, 301. <https://doi.org/10.1016/0026-265X(66)90218-9>
  • Kelley M.T., Belew W.L., Pierce G.V., Shults W.D., Jones H.C., Fisher D.J.: Controlled-potential polarography and coulometry as microanalytical techniques. Microchemical Journal 1966, 10, 315. <https://doi.org/10.1016/0026-265X(66)90219-0>
  • Nürnberg H. W., Wolff G.: Stand der polarographischen Methoden und ihrer Instrumentation. Teil I: Gleichspannungsverfahren. Chemie Ingenieur Technik 1965, 37, 977. <https://doi.org/10.1002/cite.330371002>
  • Flemming J., Berg H.: Zum problem der idealen quecksilbertropfelektrode. Journal of Electroanalytical Chemistry (1959) 1964, 8, 291. <https://doi.org/10.1016/0022-0728(64)87019-4>
  • Becker M., Köhler G.: Über Intermittenzpolarographie. Ber Bunsenges Phys Chem 1963, 67, 690. <https://doi.org/10.1002/bbpc.19630670713>
  • Smoler I.: Influence of the position of the capillary on the transfer of concentration polarization in polarography. Journal of Electroanalytical Chemistry (1959) 1963, 6, 465. <https://doi.org/10.1016/0022-0728(63)80178-3>
  • Reinert K. E.: Polarographische Reaktionsgeschwindigkeitsmessungen II. Mitt.: Theorie reaktionsbedingter Diffusionsstrom‐Zeit‐Kurven für einfache chemische Reaktionen in Lösung. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 1962, 66, 379. <https://doi.org/10.1002/bbpc.19620660502>
  • Nürnberg H. W.: Moderne Methoden der Gleichspannungspolarographie. Z. Anal. Chem. 1962, 186, 1. <https://doi.org/10.1007/BF00465496>
  • Subrahmanya R.S.: MODIFICATION OF THE ILKOVIC EQUATION. Can. J. Chem. 1962, 40, 289. <https://doi.org/10.1139/v62-047>
  • Nürnberg H.W., von Stackelberg M.: Arbeitsmethoden und anwendungen der gleichspannungspolarographie. Journal of Electroanalytical Chemistry (1959) 1961, 2, 181. <https://doi.org/10.1016/0022-0728(61)80021-1>
  • Nürnberg H.W., Von Stackelberg M.: Arbeitsmethoden und anwendungen der gleichspannungspolarographie. Journal of Electroanalytical Chemistry (1959) 1961, 2, 350. <https://doi.org/10.1016/0022-0728(61)85018-3>
  • Nürnberg H. W.: Die Anwendung der Polarographie in der organischen Chemie. Angewandte Chemie 1960, 72, 433. <https://doi.org/10.1002/ange.19600721303>
  • Kůta Jaroslav, Smoler Ivan: Die durch oberflächenaktive Stoffe beeinflußten polarographischen Ströme III. Untersuchungen an Strom‐Zeit‐Kurven der Elektrodenprozesse bei Anwesenheit oberflächenaktiver Stoffe. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 1960, 64, 285. <https://doi.org/10.1002/bbpc.19600640214>
  • Tamamushi Reita, Momiyama Sunao, Tanaka Nobuyuki: Current-time characteristics of the rapidly dropping mercury electrode. Analytica Chimica Acta 1960, 23, 585. <https://doi.org/10.1016/S0003-2670(60)80132-8>