Collect. Czech. Chem. Commun.
1970, 35, 535-544
https://doi.org/10.1135/cccc19700535
Conductance of concentrated aqueous solutions of electrolytes. I. Strong uni-univalent electrolytes
M. Postler
Crossref Cited-by Linking
- Naseri Boroujeni Saman, Maribo-Mogensen B., Liang X., Kontogeorgis G. M.: Theoretical and practical investigation of ion–ion association in electrolyte solutions. The Journal of Chemical Physics 2024, 160. <https://doi.org/10.1063/5.0198308>
- Kalikin Nikolai N., Budkov Yury A.: Modified Debye–Hückel–Onsager theory for electrical conductivity in aqueous electrolyte solutions: Account of ionic charge nonlocality. The Journal of Chemical Physics 2024, 161. <https://doi.org/10.1063/5.0231958>
- Naseri Boroujeni Saman, Maribo-Mogensen Bjørn, Liang Xiaodong, Kontogeorgis Georgios M.: On the estimation of equivalent conductivity of electrolyte solutions: The effect of relative static permittivity and viscosity. Fluid Phase Equilibria 2023, 567, 113698. <https://doi.org/10.1016/j.fluid.2022.113698>
- Naseri Boroujeni Saman, Maribo-Mogensen Bjørn, Liang Xiaodong, Kontogeorgis Georgios M.: New Electrical Conductivity Model for Electrolyte Solutions Based on the Debye–Hückel–Onsager Theory. J. Phys. Chem. B 2023, 127, 9954. <https://doi.org/10.1021/acs.jpcb.3c03381>
- Naseri Boroujeni Saman, Liang Xiaodong, Maribo-Mogensen Bjørn, Kontogeorgis Georgios M.: Comparison of Models for the Prediction of the Electrical Conductivity of Electrolyte Solutions. Ind. Eng. Chem. Res. 2022, 61, 3168. <https://doi.org/10.1021/acs.iecr.1c04365>
- Bernard O., Aupiais J.: Conductivity of weak electrolytes for buffer solutions: Modeling within the mean spherical approximation. Journal of Molecular Liquids 2018, 272, 631. <https://doi.org/10.1016/j.molliq.2018.09.103>
- Zarubin Dmitri P.: Numerical Simulation of pH Measurement in Dilute Solutions of the System H2O–KCl–HCl. J Solution Chem 2017, 46, 1284. <https://doi.org/10.1007/s10953-017-0644-5>
- Marcus Yizhak: Unconventional Deep Eutectic Solvents: Aqueous Salt Hydrates. ACS Sustainable Chem. Eng. 2017, 5, 11780. <https://doi.org/10.1021/acssuschemeng.7b03528>
- McCleskey R. Blaine: Electrical Conductivity of Electrolytes Found In Natural Waters from (5 to 90) °C. J. Chem. Eng. Data 2011, 56, 317. <https://doi.org/10.1021/je101012n>
- Hernández-Luis Felipe, Benjumea Dora M., Vázquez Mario V., Galleguillos Héctor R.: Activity measurements in the NaF+NaClO4+H2O ternary system at 298.15K. Fluid Phase Equilibria 2005, 235, 72. <https://doi.org/10.1016/j.fluid.2005.07.006>
- Cortazar E, Usobiaga A, Fernández L.A, de Diego A, Madariaga J.M: Automation of a procedure to find the polynomial which best fits (κ, c1, c2, T) data of electrolyte solutions by non-linear regression analysis using mathematica® software. Computers & Chemistry 2002, 26, 253. <https://doi.org/10.1016/S0097-8485(01)00115-2>
- Rohman Nashiour, Dass Narendra N., Mahiuddin Sekh: Isentropic compressibility, effective pressure, classical sound absorption and shear relaxation time of aqueous lithium bromide, sodium bromide and potassium bromide solutions. Journal of Molecular Liquids 2002, 100, 265. <https://doi.org/10.1016/S0167-7322(02)00047-8>
- de Diego A., Usobiaga A., Madariaga J.M.: Critical comparison among equations derived from the Falkenhagen model to fit conductimetric data of concentrated electrolyte solutions. Journal of Electroanalytical Chemistry 1998, 446, 177. <https://doi.org/10.1016/S0022-0728(97)00595-0>
- de Diego A., Madariaga J.M., Chapela E.: Empirical model of general application to fit (k, c, T) experimental data from concentrated aqueous electrolyte solutions. Electrochimica Acta 1997, 42, 1449. <https://doi.org/10.1016/S0013-4686(96)00360-X>
- de Diego A., Usobiaga A., Madariaga J.M.: Modification of the Falkenhagen equation to fit conductimetric data for concentrated electrolyte solutions. Journal of Electroanalytical Chemistry 1997, 430, 263. <https://doi.org/10.1016/S0022-0728(97)00261-1>
- Durand-Vidal S., Turq P., Bernard O.: Model for the Conductivity of Ionic Mixtures within the Mean Spherical Approximation. 1. Three Simple Ionic Species. J. Phys. Chem. 1996, 100, 17345. <https://doi.org/10.1021/jp9613605>
- Gierszewski P.J, Prasad R.C, Kirk D.W: Properties of LiOH and LiNO3 aqueous solutions: Additional results. Fusion Engineering and Design 1991, 15, 279. <https://doi.org/10.1016/0920-3796(92)90046-7>
- Gierszewski P.J., Finn P.A., Kirk D.W.: Properties of LiOH and LiNO3 aqueous solutions. Fusion Engineering and Design 1990, 13, 59. <https://doi.org/10.1016/0920-3796(90)90033-3>
- Gupta Ratan Lal, Ismail Kochi: Electrical Conductance of a Mixture of Sodium and Potassium Thiocyanates in Aqueous Medium at 25 °C. Bulletin of the Chemical Society of Japan 1988, 61, 2605. <https://doi.org/10.1246/bcsj.61.2605>
- Panopoulos Demetrios K., Kaneko Hiroyuki, Spiro Michael: Transference numbers of sodium chloride in concentrated aqueous solutions and chloride conductances in several concentrated electrolyte solutions. J Solution Chem 1986, 15, 243. <https://doi.org/10.1007/BF00646692>
- Della Monica Mario: Conductance equation for concentrated electrolyte solution. Electrochimica Acta 1984, 29, 159. <https://doi.org/10.1016/0013-4686(84)87041-3>
- King Fraser, Spiro Michael: Transference numbers and phenomenological transport coefficients for concentrated aqueous hydrochloric acid solutions at 25�C. J Solution Chem 1983, 12, 65. <https://doi.org/10.1007/BF00650713>
- Tan S. H., Kies H. L.: Conductometric titrations in the presence of indifferent electrolyte. Bulletin des Soc Chimique 1980, 89, 599. <https://doi.org/10.1002/bscb.19800890803>
- Della Monica Mario, Petrella G., Sacco A., Bu̇fo S.: Transference numbers in concentrated sodium chloride solutions. Electrochimica Acta 1979, 24, 1013. <https://doi.org/10.1016/0013-4686(79)87099-1>
- Bruno P., Gatti C., Della Monica M.: Electrical Conductivity, Viscosity and Density of NaI in Formamide Solutions in the Temperature Range 35–80°C. Electrochimica Acta 1975, 20, 533. <https://doi.org/10.1016/0013-4686(75)80002-8>
- Bruno P., Della Monica M.: Density, viscosity and electrical conductivity of LiCl and some uni-bivalent electrolytes in formamide solutions at 25°C. Electrochimica Acta 1975, 20, 179. <https://doi.org/10.1016/0013-4686(75)90055-9>