Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1971, 36, 842-854
https://doi.org/10.1135/cccc19710842

Electrochemical oxidation pathways of substituted dimethylanilines

R. Hand, M. Melicharek, D. I. Scoggin, R. Stotz, A. K. Carpenter and R. F. Nelson

Crossref Cited-by Linking

  • Mruthunjaya Ashwin K. V., Torriero Angel A. J.: Mechanistic Aspects of the Electrochemical Oxidation of Aliphatic Amines and Aniline Derivatives. Molecules 2023, 28, 471. <https://doi.org/10.3390/molecules28020471>
  • Martins D., Garrido E.M.P.J., Borges F., Garrido J.M.P.J.: Voltammetric profiling of new psychoactive substances: Piperazine derivatives. Journal of Electroanalytical Chemistry 2021, 883, 115054. <https://doi.org/10.1016/j.jelechem.2021.115054>
  • Tang Hongyang, Smolders Simon, Li Yun, De Vos Dirk, Vercammen Jannick: Electro-oxidative C(sp2)–H/O–H cross-dehydrogenative coupling of phenols and tertiary anilines for diaryl ether formation. Catal. Sci. Technol. 2021, 11, 3925. <https://doi.org/10.1039/D1CY00186H>
  • Merli Daniele, Pretali Luca, Fasani Elisa, Albini Angelo, Profumo Antonella: Analytical Determination and Electrochemical Characterization of the Oxazolidinone Antibiotic Linezolid. Electroanalysis 2011, 23, 2364. <https://doi.org/10.1002/elan.201100191>
  • Rasche A., Heinze J.: On the σ-dimerization of N,N-dimethyl-p-toluidine during anodic oxidation—A reinvestigation. Electrochimica Acta 2008, 53, 3812. <https://doi.org/10.1016/j.electacta.2007.09.020>
  • Evans Russell G., Compton Richard G.: A Kinetic Study of the Reaction between N,N‐Dimethyl‐p‐toluidine and its Electrogenerated Radical Cation in a Room Temperature Ionic Liquid. ChemPhysChem 2006, 7, 488. <https://doi.org/10.1002/cphc.200500404>
  • Streeter Ian, Wain Andrew J., Thompson Mary, Compton Richard G.: In Situ Electrochemical ESR and Voltammetric Studies on the Anodic Oxidation of para-Haloanilines in Acetonitrile. J. Phys. Chem. B 2005, 109, 12636. <https://doi.org/10.1021/jp058064p>
  • OYAMA Munetaka: Spectroscopic detection and reaction analysis of aromatic cation radicals using an electron-transfer stopped-flow method. BUNSEKI KAGAKU 2004, 53, 1105. <https://doi.org/10.2116/bunsekikagaku.53.1105>
  • Rees Neil V, Klymenko Oleksiy V, Compton Richard G, Oyama Munetaka: The electro-oxidation of N,N-dimethyl-p-toluidine in acetonitrile:. Journal of Electroanalytical Chemistry 2002, 531, 33. <https://doi.org/10.1016/S0022-0728(02)01054-9>
  • Oyama Munetaka, Goto Masashi, Park Hyun: Apparent acid–base reaction between the N,N-dimethyl-p-toluidine cation radical and the neutral molecule in acetonitrile. Electrochemistry Communications 2002, 4, 110. <https://doi.org/10.1016/S1388-2481(01)00283-1>
  • Goto Masashi, Park Hyun, Otsuka Koji, Oyama Munetaka: Kinetics of the Decay Reactions of the N,N-Dimethyl-p-Toluidine Cation Radical in Acetonitrile. Acid−Base Interaction to Promote the CH2−CH2 Bonding. J. Phys. Chem. A 2002, 106, 8103. <https://doi.org/10.1021/jp026073h>
  • Oyama Munetaka, Higuchi Toshihiro: Electron-Transfer Stopped-Flow Method: Its Validity for Spectrochemical Analysis of Electrogenerated Cation Radicals. J. Electrochem. Soc. 2002, 149, E12. <https://doi.org/10.1149/1.1426402>
  • Holze Rudolf: Radical Intermediates in Electrochemical Polymer-Forming Reactions. Collect. Czech. Chem. Commun. 2000, 65, 899. <https://doi.org/10.1135/cccc20000899>
  • Kessel R., Hansen G., Schultze J. W.: XP‐Spectra, Sputterexperiments and UV‐VIS‐Reflection Spectra of Polyaniline. Ber Bunsenges Phys Chem 1988, 92, 710. <https://doi.org/10.1002/bbpc.198800177>
  • Ohsaka Takeo, Okajima Takeyoshi, Oyama Noboru: Anion-exchange properties of polymer films prepared by electrochemically initiated polymerization of N,N-dialkyl substituted aniline derivatives. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1986, 200, 159. <https://doi.org/10.1016/0022-0728(86)90053-7>
  • Eberson Lennart: Catalysis by electron transfer in organic chemistry. Journal of Molecular Catalysis 1983, 20, 27. <https://doi.org/10.1016/0304-5102(83)83012-0>
  • Pantel Siegbert: Catalytic—kinetic determination of some iodine-containing organic compounds with different catalytic activities by a biamperostatic method. Analytica Chimica Acta 1982, 141, 353. <https://doi.org/10.1016/S0003-2670(01)95340-1>
  • Vettorazzi N., Silber J.J., Sereno L.: Anodic oxidation of 1-naphthylamine in acetonitrile. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1981, 125, 459. <https://doi.org/10.1016/S0022-0728(81)80362-2>
  • Pragst F., Jugelt W.: Elektrochemisches Verhalten von N‐Aryl‐Δ2‐pyrazolinen. VI. Kinetische Untersuchungen an der rotierenden Scheibenelektrode zum Mechanismus der anodischen Dimerisierung von 1,3,5‐Triaryl‐Δ2‐pyrazolinen. J. Prakt. Chem. 1974, 316, 981. <https://doi.org/10.1002/prac.19743160616>
  • Falck J.Russell, Miller L.L., Stermitz F.R.: Electrooxidative synthesis of morphinandienones from 1-benzyltetrahydroisoquinolines. Tetrahedron 1974, 30, 931. <https://doi.org/10.1016/S0040-4020(01)97477-0>
  • Pragst F.: Anodische Oxydation und elektrochemische Lumineszenz von 1,3,5‐Triphenyl‐Δ2‐pyrazolin. J. Prakt. Chem. 1973, 315, 549. <https://doi.org/10.1002/prac.19733150322>
  • Pietrzyk Donald J.: Organic polarography. Anal. Chem. 1972, 44, 457. <https://doi.org/10.1021/ac60313a018>
  • HAND R., MELICHAREK M., SCOGGIN D. I., STOTZ R., CARPENTER A. K., NELSON R. F.: ChemInform Abstract: ELEKTROCHEMISCHE OX.‐WEGE BEI SUBSTITUIERTEN DIMETHYLANILINEN. Chemischer Informationsdienst. Organische Chemie 1971, 2. <https://doi.org/10.1002/chin.197123132>