Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1982, 47, 1060-1068
https://doi.org/10.1135/cccc19821060

A contribution to evaluation of influence of medium in electronic and infrared spectroscopy

Vojtěch Bekárek and Jan Juřina

Department of Analytical and Organic Chemistry, Palacký University, 77 146 Olomouc

Crossref Cited-by Linking

  • Serhieieva Yevheniia, Zakharov Anton, Kiyko Sergey: Peculiarities of solvatochromism of 4-[[(2,4-dinitrophenyl)methylene]imino-2,6-diphenyl]phenol and Reichardt’s dye. DFT calculations. Chemical Series 2022, 23. <https://doi.org/10.26565/2220-637X-2022-38-03>
  • Wang Xinyu, Dao Rina, Yao Jia, Peng De, Li Haoran: Modification of the Onsager Reaction Field and Its Application on Spectral Parameters. ChemPhysChem 2017, 18, 763. <https://doi.org/10.1002/cphc.201601093>
  • Machado Vanderlei G., Stock Rafaela I., Reichardt Christian: Pyridinium N-Phenolate Betaine Dyes. Chem. Rev. 2014, 114, 10429. <https://doi.org/10.1021/cr5001157>
  • Jessop Philip G., Jessop David A., Fu Dongbao, Phan Lam: Solvatochromic parameters for solvents of interest in green chemistry. Green Chem 2012, 14, 1245. <https://doi.org/10.1039/c2gc16670d>
  • Catalán Javier, de Paz Jose Luis Garcia, Reichardt Christian: On the Molecular Structure and UV/vis Spectroscopic Properties of the Solvatochromic and Thermochromic Pyridinium-N-Phenolate Betaine Dye B30. J. Phys. Chem. A 2010, 114, 6226. <https://doi.org/10.1021/jp1009302>
  • Catalán Javier: Toward a Generalized Treatment of the Solvent Effect Based on Four Empirical Scales: Dipolarity (SdP, a New Scale), Polarizability (SP), Acidity (SA), and Basicity (SB) of the Medium. J. Phys. Chem. B 2009, 113, 5951. <https://doi.org/10.1021/jp8095727>
  • Vokin A. I., Shulunova A. M., Aksamentova T. N., Bozhenkov G. V., Turchaninov V. K.: Solvatochromism of heteroaromatic compounds: XXVIII. Factors affecting the nonspecific solvatochromic effect in the UV spectra of aromatic nitro compounds in aprotic protophilic solvents. Russ J Gen Chem 2006, 76, 596. <https://doi.org/10.1134/S1070363206040189>
  • Fedorov S. V., Krivoruchka I. G., Shulunova A. M., Sherstyannikova L. V., Trofimova O. M., Vokin A. I., Turchaninov V. K.: Solvatochromism of Heteroaromatic Compounds: XXV. Effect of Bifurcate Hydrogen Bond with a Weak Intramolecular Component on the IR, NMR, and UV Spectra of 2,6-Dibromo-4-nitrophenol. Russ J Gen Chem 2005, 75, 100. <https://doi.org/10.1007/s11176-005-0179-0>
  • de Kowalewski Dora G., Kowalewski Valdemar J., Contreras Ruben H., Dı́ez Ernesto, Casanueva Jorge, San Fabián Jesús, Esteban Angel L., Galache Maria P.: Solvent Effects on Oxygen-17 Chemical Shifts in Methyl Formate: Linear Solvation Shift Relationships. Journal of Magnetic Resonance 2001, 148, 1. <https://doi.org/10.1006/jmre.2000.2200>
  • Eberhardt Runar, Löbbecke Stefan, Neidhart Bernd, Reichardt Christian: Pyridinium N‐Phenoxide Betaines and Their Application to the Characterization of Solvent Polarities, XXIII. Determination of ET(30) Values of Supercritical Carbon Dioxide at Various Pressures and Temperatures. Liebigs Ann./Recl. 1997, 1997, 1195. <https://doi.org/10.1002/jlac.199719970622>
  • Sun Ya‐Ping, Bunker Christopher E.: Solute and Solvent Dependencies of Intermolecular Interactions in Different Density Regions in Supercritical Fluids. A Generalization of the Three‐Density‐Region Solvation Mechanism. Ber Bunsenges Phys Chem 1995, 99, 976. <https://doi.org/10.1002/bbpc.199500012>
  • Dutkiewicz Maria, Dutkiewicz Edward: The relation between the nonlinear dielectric effect and solvent polarity. J Solution Chem 1993, 22, 787. <https://doi.org/10.1007/BF00648582>
  • Sun Ya-Ping, Bunker Christopher E., Hamilton Norwood B.: Py scale in vapor phase and in supercritical carbon dioxide. Evidence in support of a three-density-region model for solvation in supercritical fluids. Chemical Physics Letters 1993, 210, 111. <https://doi.org/10.1016/0009-2614(93)89109-U>
  • Mizerski Witold, Kalinowski Marek K.: Electrostatic potentials of molecules and prediction of the lewis acid-base properties of solvents, part II. Application of electrostatic parameters. Monatsh Chem 1992, 123, 675. <https://doi.org/10.1007/BF00812315>
  • Ikushima Yutaka, Saito Norio, Arai Masahiko, Arai Kunio: Solvent Polarity Parameters of Supercritical Carbon Dioxide as Measured by Infrared Spectroscopy. Bulletin of the Chemical Society of Japan 1991, 64, 2224. <https://doi.org/10.1246/bcsj.64.2224>
  • Bosch Elisabeth., Rafols Clara., Roses Marti.: Ionic equilibria in neutral amphiprotic solvents: relationships between electrolyte pK values and solvent polarity and composition for several binary isopropyl alcohol mixtures. Anal. Chem. 1990, 62, 102. <https://doi.org/10.1021/ac00201a003>
  • Fujii Toshihiro., Jimba Hitoshi., Arimoto Hiromi.: Mass spectrometric studies on the response mechanism of surface ionization detectors for gas chromatography. Anal. Chem. 1990, 62, 107. <https://doi.org/10.1021/ac00201a004>
  • Gonçalves Raquel M. C., Simões Ana M. N., Albuquerque Lídia M. P. C.: Linear solvation-energy relationships: solvolytic reactions of t-butyl bromide and t-butyl iodide in hydroxylic solvents. J. Chem. Soc., Perkin Trans. 2 1990, 1379. <https://doi.org/10.1039/P29900001379>
  • Cheong Won Jo., Carr Peter W.: Kamlet-Taft .pi.* polarizability/dipolarity of mixtures of water with various organic solvents. Anal. Chem. 1988, 60, 820. <https://doi.org/10.1021/ac00159a018>
  • Costanzo Robert B., Barry Eugene F.: Alternating current plasma detector for selective mercury detection in gas chromatography. Anal. Chem. 1988, 60, 826. <https://doi.org/10.1021/ac00159a019>