Collect. Czech. Chem. Commun.
1989, 54, 1137-1202
https://doi.org/10.1135/cccc19891137
Structure of hard body fluids. A critical compilation of selected computer simulation data
Ivo Nezbedaa, Stanislav Labíkb and Anatol Malijevskýb
a Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague 6-Suchdol
b Department of Physical Chemistry, Prague Institute of Chemical Technology, 166 28 Prague 6
Crossref Cited-by Linking
- Solana J. R., Akhouri B. P.: The role of higher-order terms in perturbation approaches to the monomer and bonding contributions in a SAFT-type equation of state for square-well chain fluids. Molecular Physics 2018, 116, 1706. <https://doi.org/10.1080/00268976.2018.1444802>
- Munaò G., Costa D., Caccamo C.: Thermodynamically consistent reference interaction site model theory of the tangent diatomic fluid. Chemical Physics Letters 2009, 470, 240. <https://doi.org/10.1016/j.cplett.2009.01.064>
- Munaò G., Costa D., Caccamo C.: Reference interaction site model investigation of homonuclear hard dumbbells under simple fluid theory closures: Comparison with Monte Carlo simulations. The Journal of Chemical Physics 2009, 130. <https://doi.org/10.1063/1.3098551>
- Jackson George, Galindo Amparo, Lymperiadis Alexandros, Adjiman Claire S.: A generalisation of the SAFT- group contribution method for groups comprising multiple spherical segments. Fluid Phase Equilb 2008, 274, 85. <https://doi.org/10.1016/j.fluid.2008.08.005>
- Boublík Tomáš: Hard-sphere radial distribution function from the residual chemical potential. Mole Phys 2006, 104, 3425. <https://doi.org/10.1080/00268970601014831>
- Trokhymchuk Andrij, Nezbeda Ivo, Jirsák Jan, Henderson Douglas: Hard-sphere radial distribution function again. The Journal of Chemical Physics 2005, 123. <https://doi.org/10.1063/1.1979488>
- Hu Jiawen, Duan Zhenhao: Theoretical prediction of the coordination number, local composition, and pressure-volume-temperature properties of square-well and square-shoulder fluids. The Journal of Chemical Physics 2005, 123. <https://doi.org/10.1063/1.2140271>
- Largo J., Solana J.R.: Theory and computer simulation of the zero- and first-order perturbative contributions to the pair correlation function of square-well fluids. Fluid Phase Equilibria 2003, 212, 11. <https://doi.org/10.1016/S0378-3812(03)00256-5>
- Lyndon LARGO, VEGA C., MacDOWELL L. G., SOLANA J. R.: A computer simulation study of racemic mixtures. Mole Phys 2002, 100, 2397. <https://doi.org/10.1080/00268970110109871>
- Duda Yurko, Lee Lloyd L., Kalyuzhnyi Yurij, Chapman Walter G., David Ting P.: Structure and bridge functions of fused-sphere dimeric fluids. Chemical Physics Letters 2001, 339, 89. <https://doi.org/10.1016/S0009-2614(01)00304-9>
- Duda Yurko, Lee Lloyd L., Kalyuzhnyi Yurij, Chapman Walter G., Ting P. David: Structures of fused-dimer fluids: A new closure based on the potential distribution theorems. The Journal of Chemical Physics 2001, 114, 8484. <https://doi.org/10.1063/1.1363667>
- Boublı́k Tomáš: Ornstein–Zernike equation for convex molecule fluids. The Journal of Chemical Physics 2001, 115, 925. <https://doi.org/10.1063/1.1379762>
- BOUBLIK By TOMAS: RESEARCH NOTE Radial distribution functions of hard sphere mixtures. Mole Phys 1997, 91, 161. <https://doi.org/10.1080/002689797171850>
- Yoshimura Yosuke: Effect of Solute-Solvent Interaction on the Molecular Association in a Hard Sphere Fluid. J. Phys. Soc. Jpn. 1997, 66, 1532. <https://doi.org/10.1143/JPSJ.66.1532>
- Gil-Villegas Alejandro, del Río Fernando, Benavides Ana Laura: Deviations from corresponding-states behavior in the vapor-liquid equilibrium of the square-well fluid. Fluid Phase Equilb 1996, 119, 97. <https://doi.org/10.1016/0378-3812(95)02851-X>
- Henderson Douglas, Quintana Jacqueline, Sokol/owski Stefan: A comparison of integral equations and density functional theory versus Monte Carlo for hard dumbbells near a hard wall. The Journal of Chemical Physics 1995, 102, 4991. <https://doi.org/10.1063/1.469549>
- Lee Lloyd L.: An accurate integral equation theory for hard spheres: Role of the zero-separation theorems in the closure relation. The Journal of Chemical Physics 1995, 103, 9388. <https://doi.org/10.1063/1.469998>
- Kolafa Jiří, Nezbeda Ivo: The hard tetrahedron fluid: a model for the structure of water?. Molecular Physics 1995, 84, 421. <https://doi.org/10.1080/00268979500100281>
- Brańka A.C., Wojciechowski K.W.: Equation of state of planar hard molecular fluids; hard cyclic multimer system. Chemical Phys 1994, 181, 29. <https://doi.org/10.1016/0301-0104(94)85011-9>
- Taylor Mark P., Lipson J. E. G.: A site–site Born–Green–Yvon equation for hard sphere dimers. The Journal of Chemical Physics 1994, 100, 518. <https://doi.org/10.1063/1.466966>
- Taylor Mark P.: Square-well diatomics Exact low density results. Molecular Physics 1994, 82, 1151. <https://doi.org/10.1080/00268979400100814>
- Quintana Jacqueline, Henderson D., Haymet A. D. J.: Orientation of a molecular fluid next to a hard wall: The Percus–Yevick theory. The Journal of Chemical Physics 1993, 98, 1486. <https://doi.org/10.1063/1.464312>
- Amos Michael D., Jackson George: Bonded hard-sphere (BHS) theory for the equation of state of fused hard-sphere polyatomic molecules and their mixtures. The Journal of Chemical Physics 1992, 96, 4604. <https://doi.org/10.1063/1.462796>
- Lee Lloyd L.: Chemical potentials based on the molecular distribution functions. An exact diagrammatical representation and the star function. The Journal of Chemical Physics 1992, 97, 8606. <https://doi.org/10.1063/1.463379>
- Taylor Mark P., Lipson J. E. G.: On the Born–Green–Yvon equation and triplet distributions for hard spheres. The Journal of Chemical Physics 1992, 97, 4301. <https://doi.org/10.1063/1.463932>
- Del Río Fernando, Benavides Ana Laura: On some properties of the hard-sphere radial distribution function. Molecular Physics 1991, 72, 307. <https://doi.org/10.1080/00268979100100231>
- Labík S., Malijevský A., Smith W.R.: An accurate integral equation for molecular fluids. Molecular Physics 1991, 73, 87. <https://doi.org/10.1080/00268979100101081>
- Labík S., Malijevský A., Smith W.R.: An accurate integral equation for molecular fluids : Part II. Hard heteronuclear diatomics. Mole Phys 1991, 73, 495. <https://doi.org/10.1080/00268979100101341>
- de Lonngi Dolores Ayala, Villanueva Pablo Alejandro Lonngi: Irreducible rational approximants for the hard-sphere fluid. Mole Phys 1991, 73, 763. <https://doi.org/10.1080/00268979100101531>
- Archer Amanda L., Jackson George: Theory and computer simulations of heteronuclear diatomic hard-sphere molecules (hard dumbbells). Mole Phys 1991, 73, 881. <https://doi.org/10.1080/00268979100101631>
- Amos Michael D., Jackson George: BHS theory and computer simulations of linear heteronuclear triatomic hard-sphere molecules. Mole Phys 1991, 74, 191. <https://doi.org/10.1080/00268979100102161>
- Pospí[sbreve]il R., Malijevský A., Labík S., Smith W.R.: An accurate integral equation for molecular fluids : III. Hard linear homonuclear triatomics. Mole Phys 1991, 74, 253. <https://doi.org/10.1080/00268979100102201>
- Labík S., Smith W.R., Pospísil R., Malijevsky¯ A.: Non-spherical bridge function theory of molecular fluids. Molecular Physics 1990, 69, 649. <https://doi.org/10.1080/00268979000100481>
- NEZBEDA I., LABIK S., MALIJEVSKY A.: ChemInform Abstract: Structure of Hard Body Fluids. A Critical Compilation of Selected Computer Simulation Data. ChemInform 1989, 20. <https://doi.org/10.1002/chin.198937361>
- Aim Karel, Nezbeda Ivo: Thermodynamic properties of the Lennard-Jones fluid. I. Simulation data, rigorous theories and parameterized equations of state. Fluid Phase Equilb 1989, 48, 11. <https://doi.org/10.1016/0378-3812(89)80190-6>
- Nezbeda Ivo, Aim Karel: On the way from theoretical calculations to practical equations of state for real fluids. Fluid Phase Equilb 1989, 52, 39. <https://doi.org/10.1016/0378-3812(89)80309-7>
- Vörtler Horst L., Kolafa Jiři, Nezbeda Ivo: Computer simulation studies of hard body fluid mixtures II. Molecular Physics 1989, 68, 547. <https://doi.org/10.1080/00268978900102351>