Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1997, 62, 1384-1395
https://doi.org/10.1135/cccc19971384

Measurement and Calculation of the Raman Optical Activity of α-Pinene and trans-Pinane

Petr Bouřa, Vladimír Baumrukb and Jana Hanzlíkováb

a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic,166 10 Prague 6, Czech Republic
b Institute of Physics, Charles University, 121 16 Prague 2, Czech Republic

Crossref Cited-by Linking

  • Ziadi Kamal: Anharmonic effects on Vibrational circular dichroism and Raman optical activity spectra of medium‐size molecules: Alpha‐pinene and beta‐pinene. J Raman Spectroscopy 2022, 53, 222. <https://doi.org/10.1002/jrs.6269>
  • Chruszcz-Lipska Katarzyna: Probing the stereochemical structure of carenes using Raman and Raman optical activity spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 276, 121176. <https://doi.org/10.1016/j.saa.2022.121176>
  • Michal Pavel, Čelechovský Radek, Dudka Michal, Kapitán Josef, Vůjtek Milan, Berešová Marie, Šebestík Jaroslav, Thangavel Karthick, Bouř Petr: Vibrational Optical Activity of Intermolecular, Overtone, and Combination Bands: 2-Chloropropionitrile and α-Pinene. J. Phys. Chem. B 2019, 123, 2147. <https://doi.org/10.1021/acs.jpcb.9b00403>
  • Mattiat Johann, Luber Sandra: Vibrational (resonance) Raman optical activity with real time time dependent density functional theory. The Journal of Chemical Physics 2019, 151. <https://doi.org/10.1063/1.5132294>
  • Luber Sandra: Localized molecular orbitals for calculation and analysis of vibrational Raman optical activity. Phys. Chem. Chem. Phys. 2018, 20, 28751. <https://doi.org/10.1039/C8CP05880F>
  • Polavarapu Prasad L., Covington Cody L., Chruszcz‐Lipska Katarzyna, Zajac Grzegorz, Baranska Malgorzata: Vibrational Raman optical activity of bicyclic terpenes: comparison between experimental and calculated vibrational Raman, Raman optical activity, and dimensionless circular intensity difference spectra and their similarity analysis. J. Raman Spectrosc. 2017, 48, 305. <https://doi.org/10.1002/jrs.5035>
  • Luber Sandra: Raman Optical Activity Spectra from Density Functional Perturbation Theory and Density-Functional-Theory-Based Molecular Dynamics. J. Chem. Theory Comput. 2017, 13, 1254. <https://doi.org/10.1021/acs.jctc.6b00820>
  • Luber Sandra: Exploring Raman optical activity for transition metals: From coordination compounds to solids. BSI 2015, 4, 255. <https://doi.org/10.3233/BSI-150115>
  • Štejfa Vojtěch, Fulem Michal, Růžička Květoslav, Červinka Ctirad: Thermodynamic study of selected monoterpenes III. The Journal of Chemical Thermodynamics 2014, 79, 280. <https://doi.org/10.1016/j.jct.2014.04.022>
  • Parchaňský Václav, Kapitán Josef, Bouř Petr: Inspecting chiral molecules by Raman optical activity spectroscopy. RSC Adv. 2014, 4, 57125. <https://doi.org/10.1039/C4RA10416A>
  • Hudecová Jana, Profant Václav, Novotná Pavlína, Baumruk Vladimír, Urbanová Marie, Bouř Petr: CH Stretching Region: Computational Modeling of Vibrational Optical Activity. J. Chem. Theory Comput. 2013, 9, 3096. <https://doi.org/10.1021/ct400285n>
  • Pazderková Markéta, Profant Václav, Hodačová Jana, Šebestík Jaroslav, Pazderka Tomáš, Novotná Pavlína, Urbanová Marie, Šafařík Martin, Buděšínský Miloš, Tichý Miloš, Bednárová Lucie, Baumruk Vladimír, Maloň Petr: Nonplanar Tertiary Amides in Rigid Chiral Tricyclic Dilactams. Peptide Group Distortions and Vibrational Optical Activity. J. Phys. Chem. B 2013, 117, 9626. <https://doi.org/10.1021/jp405226k>
  • Chruszcz‐Lipska Katarzyna, Blanch Ewan W.: In situ analysis of chiral components of pichtae essential oil by means of ROA spectroscopy: experimental and theoretical Raman and ROA spectra of bornyl acetate. J Raman Spectroscopy 2012, 43, 286. <https://doi.org/10.1002/jrs.3033>
  • Yamamoto Shigeki, Kaminský Jakub, Bouř Petr: Structure and Vibrational Motion of Insulin from Raman Optical Activity Spectra. Anal. Chem. 2012, 84, 2440. <https://doi.org/10.1021/ac2032436>
  • Yamamoto Shigeki, Li Xiaojun, Ruud Kenneth, Bouř Petr: Transferability of Various Molecular Property Tensors in Vibrational Spectroscopy. J. Chem. Theory Comput. 2012, 8, 977. <https://doi.org/10.1021/ct200714h>
  • Simmen Benjamin, Weymuth Thomas, Reiher Markus: How Many Chiral Centers Can Raman Optical Activity Spectroscopy Distinguish in a Molecule?. J. Phys. Chem. A 2012, 116, 5410. <https://doi.org/10.1021/jp303428f>
  • Yamamoto Shigeki, Watarai Hitoshi, Bouř Petr: Monitoring the Backbone Conformation of Valinomycin by Raman Optical Activity. ChemPhysChem 2011, 12, 1509. <https://doi.org/10.1002/cphc.201000917>
  • Šebestík Jaroslav, Bouř Petr: Raman Optical Activity of Methyloxirane Gas and Liquid. J. Phys. Chem. Lett. 2011, 2, 498. <https://doi.org/10.1021/jz200108v>
  • Yamamoto Shigeki, Bouř Petr: On the limited precision of transfer of molecular optical activity tensors. Collect. Czech. Chem. Commun. 2011, 76, 567. <https://doi.org/10.1135/cccc2011018>
  • Bednárová Lucie, Bouř Petr, Maloň Petr: Vibrational and electronic optical activity of the chiral disulphide group: Implications for disulphide bridge conformation. Chirality 2010, 22, 514. <https://doi.org/10.1002/chir.20772>
  • Maloň Petr, Bednárová Lucie, Straka Michal, Krejčí Lucie, Kumprecht Lukáš, Kraus Tomáš, Kubáňová Markéta, Baumruk Vladimír: Disulfide chromophore and its optical activity. Chirality 2010, 22. <https://doi.org/10.1002/chir.20851>
  • Luber Sandra, Reiher Markus: Prediction of Raman Optical Activity Spectra of Chiral 3‐Acetylcamphorato‐Cobalt Complexes. ChemPhysChem 2010, 11, 1876. <https://doi.org/10.1002/cphc.201000121>
  • Hudecová Jana, Kapitán Josef, Baumruk Vladimír, Hammer Robert P., Keiderling Timothy A., Bouř Petr: Side Chain and Flexibility Contributions to the Raman Optical Activity Spectra of a Model Cyclic Hexapeptide. J. Phys. Chem. A 2010, 114, 7642. <https://doi.org/10.1021/jp104744a>
  • Luber Sandra, Reiher Markus: Theoretical Raman Optical Activity Study of the β Domain of Rat Metallothionein. J. Phys. Chem. B 2010, 114, 1057. <https://doi.org/10.1021/jp909483q>
  • Baranska Malgorzata, Chruszcz-Lipska Katarzyna: Raman Optical Activity: A Powerful Technique to Investigate Essential Oil Components. Natural Product Communications 2010, 5. <https://doi.org/10.1177/1934578X1000500914>
  • Ruud Kenneth, Thorvaldsen Andreas J.: Theoretical approaches to the calculation of Raman optical activity spectra. Chirality 2009, 21. <https://doi.org/10.1002/chir.20777>
  • Kaminský Jakub, Kapitán Josef, Baumruk Vladimír, Bednárová Lucie, Bouř Petr: Interpretation of Raman and Raman Optical Activity Spectra of a Flexible Sugar Derivative, the Gluconic Acid Anion. J. Phys. Chem. A 2009, 113, 3594. <https://doi.org/10.1021/jp809210n>
  • Janesko Benjamin G., Scuseria Gustavo E.: Molecule−Surface Orientational Averaging in Surface Enhanced Raman Optical Activity Spectroscopy. J. Phys. Chem. C 2009, 113, 9445. <https://doi.org/10.1021/jp9025514>
  • Šebek Jiří, Kapitán Josef, Šebestík Jaroslav, Baumruk Vladimír, Bouř Petr: l-Alanyl-l-alanine Conformational Changes Induced by pH As Monitored by the Raman Optical Activity Spectra. J. Phys. Chem. A 2009, 113, 7760. <https://doi.org/10.1021/jp902739r>
  • Luber Sandra, Reiher Markus: Calculated Raman Optical Activity Spectra of 1,6-Anhydro-β-d-glucopyranose. J. Phys. Chem. A 2009, 113, 8268. <https://doi.org/10.1021/jp902828r>
  • Buděšínský Miloš, Šebestík Jaroslav, Bednárová Lucie, Baumruk Vladimír, Šafařík Martin, Bouř Petr: Conformational Properties of the Pro-Gly Motif in the d-Ala-l-Pro-Gly-d-Ala Model Peptide Explored by a Statistical Analysis of the NMR, Raman, and Raman Optical Activity Spectra. J. Org. Chem. 2008, 73, 1481. <https://doi.org/10.1021/jo702297y>
  • Buděšínský Miloš, Daněček Petr, Bednárová Lucie, Kapitán Josef, Baumruk Vladimír, Bouř Petr: Comparison of Quantitative Conformer Analyses by Nuclear Magnetic Resonance and Raman Optical Activity Spectra for Model Dipeptides. J. Phys. Chem. A 2008, 112, 8633. <https://doi.org/10.1021/jp806181q>
  • Bednárová Lucie, Maloň Petr, Bouř Petr: Spectroscopic properties of the nonplanar amide group: A computational study. Chirality 2007, 19, 775. <https://doi.org/10.1002/chir.20462>
  • Daněček Petr, Bouř Petr: Comparison of the numerical stability of methods for anharmonic calculations of vibrational molecular energies. J Comput Chem 2007, 28, 1617. <https://doi.org/10.1002/jcc.20654>
  • Kapitán Josef, Baumruk Vladimír, Bouř Petr: Demonstration of the Ring Conformation in Polyproline by the Raman Optical Activity. J. Am. Chem. Soc. 2006, 128, 2438. <https://doi.org/10.1021/ja057337r>
  • Kapitán Josef, Baumruk Vladimír, Kopecký, Vladimír, Pohl Radek, Bouř Petr: Proline Zwitterion Dynamics in Solution, Glass, and Crystalline State. J. Am. Chem. Soc. 2006, 128, 13451. <https://doi.org/10.1021/ja062958l>
  • Kapitán Josef, Baumruk Vladimír, Kopecký, Vladimír, Bouř Petr: Conformational Flexibility of l-Alanine Zwitterion Determines Shapes of Raman and Raman Optical Activity Spectral Bands. J. Phys. Chem. A 2006, 110, 4689. <https://doi.org/10.1021/jp060260o>
  • Bouř Petr, Sychrovský Vladimír, Maloň Petr, Hanzlíková Jana, Baumruk Vladimír, Pospíšek Jan, Buděšínský Miloš: Conformation of the Dipeptide Cyclo(L-Pro-L-Pro) Monitored by the Nuclear Magnetic Resonance and Raman Optical Activity Spectra. Experimental and ab Initio Computational Study. J. Phys. Chem. A 2002, 106, 7321. <https://doi.org/10.1021/jp0126917>
  • Ruud Kenneth, Helgaker Trygve, Bouř Petr: Gauge-Origin Independent Density-Functional Theory Calculations of Vibrational Raman Optical Activity. J. Phys. Chem. A 2002, 106, 7448. <https://doi.org/10.1021/jp026037i>
  • Bouř Petr: Computations of the Raman optical activity via the sum-over-states expansions. J Comput Chem 2001, 22, 426. <https://doi.org/10.1002/1096-987X(200103)22:4<426::AID-JCC1013>3.0.CO;2-#>
  • Bouř Petr: Computations of the Raman optical activity via the sum‐over‐states expansions. J. Comput. Chem. 2001, 22, 426. <https://doi.org/10.1002/1096-987X(200103)22:4<426::AID-JCC1013>3.0.CO;2-#>
  • Bouř Petr, Kapitán Josef, Baumruk Vladimír: Simulation of the Raman Optical Activity of l-Alanyl−l-Alanine. J. Phys. Chem. A 2001, 105, 6362. <https://doi.org/10.1021/jp002572b>
  • Hanzlı́ková Jana, Praus Petr, Baumruk Vladimı́r: Raman optical activity spectrometer for peptide studies. Journal of Molecular Structure 1999, 480-481, 431. <https://doi.org/10.1016/S0022-2860(98)00718-2>
  • Bouř P., Buděšı́nský M.: Sum-over-states calculation of the nuclear spin–spin coupling constants. The Journal of Chemical Physics 1999, 110, 2836. <https://doi.org/10.1063/1.477925>
  • Bouř Petr: Calculation of the Raman optical activity via the sum-over-states expansion. Chemical Physics Letters 1998, 288, 363. <https://doi.org/10.1016/S0009-2614(98)00299-1>
  • Bouř P., McCann J., Wieser H.: The excitation scheme: A new method for calculation of vibrational circular dichroism spectra. The Journal of Chemical Physics 1998, 108, 8782. <https://doi.org/10.1063/1.476324>
  • Bouř Petr, McCann Jennifer, Wieser Hal: Vibrational Circular Dichroism Study of (−)-Sparteine. J. Phys. Chem. A 1997, 101, 9783. <https://doi.org/10.1021/jp972359o>