Collect. Czech. Chem. Commun.
2001, 66, 1735-1745
https://doi.org/10.1135/cccc20011735
Molybdenum-Catalyzed Allylic Substitution in Glycals: A C-C Bond-Forming Ferrier-Type Reaction
Andrei V. Malkova,b, Benjamin P. Farnb, Nigel Hussainc and Pavel Kočovskýa,b,*
a Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
b Department of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
c Glaxo SmithKline, Tonbridge, Kent TN11 9AN, U.K.
References
1. Collins P. M., Ferrier R. J.: Monosaccharides. J. Wiley, Chichester 1995.
2a. Tetrahedron 1992, 48, 8545.
< M. H. D.: https://doi.org/10.1016/S0040-4020(01)89435-7>
2b. Postema M. H. D.: C-Glycoside Synthesis. CRC Press, Boca Raton (FL) 1995.
2c. Levy D. E., Tang C.: The Chemistry of C-Glycosides. Pergamon, Oxford 1995.
3a. Angew. Chem., Int. Ed. Engl. 1996, 35, 1380.
< S., Bilodeau M. T.: https://doi.org/10.1002/anie.199613801>
3b. Aldrichim. Acta 1997, 30, 75.
P. H., Bilodeau M. T., Danishefsky S.:
3c. Tetrahedron Lett. 1998, 39, 2079.
< M., Ichikawa Y.: https://doi.org/10.1016/S0040-4039(98)00266-4>
4a. J. Org. Chem. 1982, 47, 3805.
S., Kerwin J. F.:
4b. J. Org. Chem. 1990, 55, 4211.
< K., Danishefsky S.: https://doi.org/10.1021/jo00300a049>
4c. Tetrahedron Lett. 2001, 42, 4053.
< M., Rahman A. A.-H. A., Schmidt R. S.: https://doi.org/10.1016/S0040-4039(01)00628-1>
5a. J. Org. Chem. 1995, 60, 3851.
< J. C., Gomez A. M., Valverde S., Fraser-Reid B.: https://doi.org/10.1021/jo00117a042>
5b. J. Chem. Soc. C 1969, 570.
< R. J., Prasad N.: https://doi.org/10.1039/j39690000570>
5c. Tetrahedron 1997, 53, 10971.
< J. S., Schaus J. V.: https://doi.org/10.1016/S0040-4020(97)00358-X>
5d. Tetrahedron 1996, 52, 6397.
< R., Schaade M., Krieger C.: https://doi.org/10.1016/0040-4020(96)00275-X>
6. Chem. Ber. 1976, 109, 3262.
< K., Park J. I.: https://doi.org/10.1002/cber.19761091002>
7. Synlett 1996, 185.
< S. N., Gallagher T.: https://doi.org/10.1055/s-1996-5346>
8. Synlett 1996, 856.
< S. N., Gallagher T.: https://doi.org/10.1055/s-1996-5600>
9a. Chem. Rev. (Washington, D. C.) 1989, 89, 1433.
< G. D., Hallberg A.: https://doi.org/10.1021/cr00097a002>
9b. Acc. Chem. Res. 1990, 23, 201.
< G. D.: https://doi.org/10.1021/ar00174a006>
9c. J. Org. Chem. 1993, 58, 2557.
< H. C., Daves G. D.: https://doi.org/10.1021/jo00061a034>
9d. Nucleosides Nucleotides 1995, 14, 105.
< H. C., Brakta M., Daves G. D.: https://doi.org/10.1080/15257779508014656>
9e. Nucleosides Nucleotides 1997, 16, 315.
< M. D., Rydzewski R. M.: https://doi.org/10.1080/07328319708001352>
10a. Can. J. Chem. 1981, 59, 889.
< H. H., Hanna Z. S.: https://doi.org/10.1139/v81-128>
10b. J. Org. Chem. 1982, 47, 2812.
< L. V., Serino A.: https://doi.org/10.1021/jo00135a035>
10c. Carbohydr. Res. 1987, 171, 161.
< D. P., Suh Y.-G.: https://doi.org/10.1016/S0008-6215(00)90885-1>
10d. Heterocycles 1991, 32, 1267.
G. J., Holzapfel C. W.:
10e. J. Org. Chem. 1997, 62, 1257.
< M.-R., Shimshock Y. C., DeShong P.: https://doi.org/10.1021/jo961973d>
11a. Tetrahedron Lett. 1995, 36, 6351.
< H., Dvořák D., Šrogl J., Kočovský P.: https://doi.org/10.1016/0040-4039(95)01229-B>
11b. Organometallics 1997, 16, 3690.
< A. P., Malkov A. V., Zimmermann N., Raynor J. B., Ahmed G., Steele J., Kočovský P.: https://doi.org/10.1021/om970202c>
11c. Tetrahedron Lett. 1997, 38, 4895.
< A. V., Baxendale I. R., Mansfield D. J., Kočovský P.: https://doi.org/10.1016/S0040-4039(97)01052-6>
11d. Tetrahedron Lett. 1997, 38, 4899.
< A. V., Davis S. L., Mitchell W. L., Kočovský P.: https://doi.org/10.1016/S0040-4039(97)01053-8>
11e. J. Org. Chem. 1999, 2737.
< A. V., Baxendale I. R., Dvořák D., Mansfield D. J., Kočovský P.: https://doi.org/10.1021/jo9821776>
11f. J. Org. Chem. 1999, 2751.
< A. V., Davis S. L., Baxendale I. R., Mitchell W. L., Kočovský P.: https://doi.org/10.1021/jo982178y>
11g. J. Org. Chem. 1999, 2765.
< P., Ahmed G., Šrogl J., Malkov A. V., Steele J.: https://doi.org/10.1021/jo9821675>
11h. J. Chem. Soc., Perkin Trans. 1 2001, 1234.
I. R., Malkov A. V., Mansfield D. J., Kočovský P.:
11i. Collect. Czech. Chem. Commun. 2001, 66, 1257.
< A. V., Kočovský P.: https://doi.org/10.1135/cccc20011257>
12. For the first application of Mo(IV) catalysts in allylic substitution, see: J. Org. Chem. 1999, 64, 5308.
< A. V., Spoor P., Vinader V., Kočovský P.: https://doi.org/10.1021/jo990372u>
13a. J. Am. Chem. Soc. 1982, 104, 5543.
< B. M., Lautens M.: https://doi.org/10.1021/ja00384a071>
13b. J. Am. Chem. Soc. 1990, 112, 9590.
< B. M., Merlic C. A.: https://doi.org/10.1021/ja00182a018>
13c. J. Am. Chem. Soc. 1995, 117, 6130.
< D., Starý I., Kočovský P.: https://doi.org/10.1021/ja00127a030>
13d. J. Am. Chem. Soc. 1998, 120, 1104.
< B. M., Hachiya I.: https://doi.org/10.1021/ja973298a>
13e. Tetrahedron Lett. 2001, 42, 509.
< A. V., Spoor P., Vinader V., Kočovský P.: https://doi.org/10.1016/S0040-4039(00)02007-4>
14a. Acc. Chem. Res. 1980, 13, 385.
< B. M.: https://doi.org/10.1021/ar50155a001>
14b. Tetrahedron 1986, 42, 4361.
< J.: https://doi.org/10.1016/S0040-4020(01)87277-X>
14c. Tetrahedron: Asymmetry 1992, 3, 1089.
< C. G., Howarth J., Williams J. M. J.: https://doi.org/10.1016/S0957-4166(00)82091-1>
14d. Chem. Rev. (Washington, D. C.) 1996, 96, 395.
< B. M., Van Vranken D. L.: https://doi.org/10.1021/cr9409804>
14e. Acc. Chem. Res. 1996, 29, 355.
< B. M.: https://doi.org/10.1021/ar9501129>
14f. Acta Chem. Scand. 1996, 50, 661.
< J.-E.: https://doi.org/10.3891/acta.chem.scand.50-0661>
14g. See also the reference section in: Tetrahedron 1992, 48, 7229.
< I., Zajíček J., Kočovský P.: https://doi.org/10.1016/S0040-4020(01)88263-6>
15a. Aust. J. Chem. 1968, 21, 2657.
J. A., Colton R.:
15b. Inorg. Chem. 1985, 24, 514.
< F. A., Falvello L. R., Meadows J. H.: https://doi.org/10.1021/ic00198a017>
15c. Inorg. Chem. 1987, 26, 1514.
< F. A., Poli R.: https://doi.org/10.1021/ic00257a011>
15d. Complex B: J. Organomet. Chem. 1989, 359, 189.
< P. K., Bury A.: https://doi.org/10.1016/0022-328X(89)85428-2>
15e. Inorg. Chim. Acta 1989, 162, 179.
< P. K., Quinlan A. J.: https://doi.org/10.1016/S0020-1693(00)83143-6>
15f. Polyhedron 1991, 10, 1717.
< D., Perez-Martinez J. A., Garcia-Granda S.: https://doi.org/10.1016/S0277-5387(00)83788-2>
15g. J. Organomet. Chem. 1993, 463, 127.
< G., Miguel D., Perez-Martinez J. A., Riera V.: https://doi.org/10.1016/0022-328X(93)83409-O>
15h. J. Organomet. Chem. 1993, 463, 121.
< M. Panizo M., Campo J. A., Tornero J., Menendez N.: https://doi.org/10.1016/0022-328X(93)83408-N>
16a. Complex C was generated in situ prior to the reaction from CF3SO3Ag (2 equivalents) and (acac)2MoCl2, which in turn was obtained on a redox reaction between MoCl5 and pentane-2,4-dione. For the original procedures, see: Inorg. Chem. 1971, 10, 2348.
< G.: https://doi.org/10.1021/ic50104a059>
16b. Aust. J. Chem. 1972, 25, 705. For an optimized protocol suitable to this chemistry, see ref.12.
A., Murray K. S., West B. O.:
17. Significant for the configurational assignment at the anomeric center is the chemical shift and coupling pattern of 5-H in the 1H NMR spectrum. Thus, while α-anomer 6a gives a signal at 4.05 (J4,5 = 3.5), β-anomer 7a is characterized by a signal at 3.79 (J4,5 = 8.7). In the 13C NMR spectra, C-5 in the α-anomer is always more shielded, as reflected by ≈5 ppm difference in the respective chemical shifts (73.2 ppm for 6a and 68.0 for 7a)19. Similar characteristics apply to aryl C-glycopyranosides21. Since almost all the C-glycosides 6–13 are known compounds (see the Experimental), the structural identification of our products was based mainly on the comparison of their NMR spectra with the published data. In addition, NOE experiments (especially the occurrence vs absence of the effect between 1-H and 5-H), in conjunction with 2D techniques, were employed to confirm the assignment.
18a. J. Org. Chem. 1989, 54, 1890.
< M., Lhoste P., Sinou D.: https://doi.org/10.1021/jo00269a026>
18b. Khim. Geterotsikl. Soedin. 2000, 45.
I., Oehme G., Michalik M., Lukevics E.: Chem. Heterocycl. Comp. (Engl. Transl.) 2000, 36, 40;
18c. Carbohydr. Res. 1977, 53, C11.
< G.: https://doi.org/10.1016/S0008-6215(00)85467-1>
18d. J. Chem. Soc. 1962, 3667.
< R. J., Overend W. G., Ryan A. E.: https://doi.org/10.1039/jr9620003667>
18e. J. Chem. Soc. 1962, 3670.
R. J., Overend W. G., Ryan A. E.:
18f. Tetrahedron Lett. 1994, 35, 8259.
< T., Sugiyama T., Kitazumi Y., Oritani T.: https://doi.org/10.1016/0040-4039(94)88297-5>
18g. Org. Mass Spectrom. 1990, 243.
< M., Lhoste P., Sinou D., Banoub J. H.: https://doi.org/10.1002/oms.1210250414>
19a. J. Chem. Soc., Chem. Commun. 1981, 1180.
< R. D., Fraser-Reid B.: https://doi.org/10.1039/c39810001180>
19b. J. Org. Chem. 1984, 49, 522.
< R. D., Fraser-Reid B.: https://doi.org/10.1021/jo00177a027>
19c. J. Org. Chem. 1988, 53, 3723.
< N., Keinan E.: https://doi.org/10.1021/jo00251a011>
19d. Carbohydr. Res. 1991, 216, 93.
< A., Ferrier R. J.: https://doi.org/10.1016/0008-6215(92)84153-J>
20a. J. Org. Chem. 1985, 50, 4659.
< R., Fraser-Reid B.: https://doi.org/10.1021/jo00223a053>
20b. Tetrahedron 1995, 51, 6517.
< J., Callier-Dublanchet A.-C., Quiclet-Sire B., Schiano A.-M., Zard S. Z.: https://doi.org/10.1016/0040-4020(95)00319-4>
20c. J. Chem. Soc., Chem. Commun. 1996, 1379.
< K., Miyamoto N., Matsuo G., Nakata M., Matsumura S.: https://doi.org/10.1039/cc9960001379>
21a. Z. Naturforsch., B 1980, 35, 1024 (wrong configuration assigned).
< G., Zamojski A.: https://doi.org/10.1515/znb-1980-0818>
21b. Tetrahedron Lett. 1994, 35, 8259 (correction).
< T., Sugiyama T., Kitazumi Y., Oritani T.: https://doi.org/10.1016/0040-4039(94)88297-5>
21c. Tetrahedron Lett. 1988, 29, 5549.
< G., Cornia M., Colombo L., Rassu G., Fava G.: https://doi.org/10.1016/S0040-4039(00)80810-2>
22a. Carbohydr. Res. 1979, 72, 285.
< R. D., Irvine R. D.: https://doi.org/10.1016/S0008-6215(00)83951-8>
22b. Aust. J. Chem. 1980, 33, 5.
R. D., Irvine R. W.:
22c. Aust. J. Chem. 1980, 33, 1037.
< R. D., Irvine R. W.: https://doi.org/10.1071/CH9801037>
22d. J. Chem. Soc. 1963, 5945.
< P. A., Reed R. I., Snedden W., Wilson J. M.: https://doi.org/10.1039/jr9630005945>