Collect. Czech. Chem. Commun.
2002, 67, 1305-1319
https://doi.org/10.1135/cccc20021305
Parallel Solid-Phase Synthesis of Partially Modified Retro and Retro-Inverso ψ[NHCH(CF3)]-Gly Peptides
Monica Sania, Pierfrancesco Bravoa,b, Alessandro Volonterioa,* and Matteo Zandaa,*
a C.N.R.-Istituto di Chimica del Riconoscimento Molecolare, sezione "A. Quilico", via Mancinelli 7, I-20131 Milano, Italy
b Dipartimento di Chimica, Materiali, e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano, Italy
References
1. J. Peptide Sci. 2002, 8, 1.
< A.: https://doi.org/10.1002/psc.366>
2a. J. Med. Chem. 1993, 36, 3039.
< G. L., Bolin D. R., Bonner M. P., Bös M., Cook C. M., Fry D. C., Graves B. J., Hatada M., Hill D. E., Khan M., Madison V. S., Rusiecki V. K., Sarabu R., Sepinwall J., Vincent G. P., Voss M. E.: https://doi.org/10.1021/jm00073a001>
2b. Angew. Chem., Int. Ed. Engl. 1994, 33, 1699.
< J.: https://doi.org/10.1002/anie.199416991>
2c. J. Med. Chem. 2000, 43, 305.
< D., Abbenante G., Fairlie D. P.: https://doi.org/10.1021/jm990412m>
3a. Chem. Rev. (Washington, D. C.) 1998, 98, 763.
< M. D., Campbell M. M.: https://doi.org/10.1021/cr970468t>
3b. Acc. Chem. Res. 1979, 12, 1.
< M., Chorev M.: https://doi.org/10.1021/ar50133a001>
3c. J. Am. Chem. Soc. 1977, 99, 8075.
< M., Willson C. G., Goodman M.: https://doi.org/10.1021/ja00466a064>
3d. Acc. Chem. Res. 1993, 26, 266.
< M., Goodman M.: https://doi.org/10.1021/ar00029a007>
3e. Trends Biotechnol. 1995, 13, 438.
< M., Goodman M.: https://doi.org/10.1016/S0167-7799(00)88999-4>
4a. Org. Lett. 2000, 2, 1827.
< A., Bravo P., Zanda M.: https://doi.org/10.1021/ol005876p>
4b. Tetrahedron Lett. 2001, 42, 3141.
< A., Bravo P., Zanda M.: https://doi.org/10.1016/S0040-4039(01)00375-6>
4c. Eur. J. Org. Chem. 2002, 428.
< A., Bellosta S., Bravo P., Canavesi M., Corradi E., Meille V. S., Monetti M., Moussier N., Zanda M.: https://doi.org/10.1002/1099-0690(20022)2002:3<428::AID-EJOC428>3.0.CO;2-J>
5. See for example: J. Am. Chem. Soc. 1997, 119, 850.
< L. R., Clements A. M., Liao J., Crensha L., Hellberg M., May J., Dean T. R., Christianson D. W.: https://doi.org/10.1021/ja963832z>
6. Tetrahedron Lett. 2000, 41, 6517.
< A., Bravo P., Moussier N., Zanda M.: https://doi.org/10.1016/S0040-4039(00)01044-3>
7. For a monograph on solid-phase combinatorial synthesis: Obrecht D., Villalgordo J. M. in: Tetrahedron Organic Chemistry Series: Solid-Supported Combinatorial and Parallel Synthesis of Small-Molecular-Weight Compounds Libraries (J. E. Baldwin and R. M. Williams, Eds). Pergamon, Oxford 1998.
8a. Tetrahedron 1996, 52, 271.
< A., Kurishita M., Ago C., Taguchi T.: https://doi.org/10.1016/0040-4020(95)00870-E>
8b. J. Fluorine Chem. 1999, 97, 91.
< T., Shinohara N., Kitazume T., Sato S.: https://doi.org/10.1016/S0022-1139(99)00034-2>
9. Excess of 3 can be recovered quantitatively in a pure form just evaporating the organic solvent from the solution without any further purification.
10. The absolute configurations of the [CH*(CF3)NH] stereogenic centres of the PMR- peptides synthesised in this work by solid-phase chemistry were not assessed experimentally. However, the remarkable analogies (in terms of stereoselectivity, as well as of spectroscopic and analytical properties) existing between the PMR-ψ[NHCH(CF3)]-Gly peptides prepared in solution4a or solid-phase chemistry strongly suggest that the main diastereomers of 4a, 4c, 4e, 4f, and their derivatives should have (S)-configuration at the [CH*(CF3)NH] center.
11a. J. Am. Chem. Soc. 1951, 73, 2371.
< N. J., Fischer F. E., Barthel E., Jr., Figueras J., Jr., Wildman W. C.: https://doi.org/10.1021/ja01149a526>
11b. Tetrahedron Lett. 1984, 25, 1143.
< H., Henning R.: https://doi.org/10.1016/S0040-4039(01)91545-X>
11c. For solid-phase conjugate 1,4-N-additions to unsubstituted acceptors, see: Tetrahedron Lett. 1996, 37, 3209.
< J. R., Rankovic Z., Rees D. C.: https://doi.org/10.1016/0040-4039(96)00497-2>
11d. Tetrahedron Lett. 1996, 37, 5277.
< S. A., Hamper B. C.: https://doi.org/10.1016/0040-4039(96)01103-3>
11e. Tetrahedron Lett. 1998, 39, 2207.
< P., Nielsen J., Hoeg-Jensen T.: https://doi.org/10.1016/S0040-4039(98)00176-2>
12. Due to the low basicity of the [NHCH(CF3)] group we observed that PMR-ψ[NHCH(CF3)]-Gly peptides do not form stable salts with TFA, which could be separated by flash chromatography, as proved by 19F NMR analysis.
13. J. Am. Chem. Soc. 1990, 112, 4011.
< D. A., Britton T. C., Ellman J. A., Dorow R. L.: https://doi.org/10.1021/ja00166a045>
14. This effect was also observed performing the reaction in solution. Volonterio A., Zanda M. et al.: Unpublished results.