Collect. Czech. Chem. Commun. 2003, 68, 2120-2138
https://doi.org/10.1135/cccc20032120

Light Scattering, Atomic Force Microscopy and Fluorescence Correlation Spectroscopy Studies of Polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) Micelles

Miroslav Štěpáneka, Jana Humpolíčkováa, Karel Procházkaa,*, Martin Hofb, Zdeněk Tuzarc, Milena Špírkovác and Thomas Wolffd

a Department of Physical and Macromolecular Chemistry and Laboratory of Specialty Polymers, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
b J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic and Center for Complex Molecular Systems and Biomacromolecules, Dolejškova 3, 182 23 Prague 8, Czech Republic
c Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
d Institute of Physical Chemistry and Electrochemistry, Dresden Technical University, Mommsenstrasse 13, 01062 Dresden, Germany

References

1. Webber S. E., Munk P., Tuzar Z. (Eds): Solvents and Self-Organization of Polymers. NATO ASI Ser. E, p. 327, 1996.
2. Hamley I. W.: Physics of Block Copolymers. Oxford University Press, Oxford 1998.
3a. Kiserow D., Procházka K., Ramireddy C., Tuzar Z., Munk P., Webber S. E.: Macromolecules 1992, 25, 461. <https://doi.org/10.1021/ma00027a072>
3b. Ramireddy C., Tuzar Z., Procházka K., Webber S. E., Munk P.: Macromolecules 1992, 25, 2541. <https://doi.org/10.1021/ma00035a037>
3c. Tian M., Quin A., Ramireddy C., Webber S. E., Munk P., Tuzar Z., Procházka K.: Langmuir 1993, 9, 1741. <https://doi.org/10.1021/la00031a022>
3d. Procházka K., Martin T. J., Munk P., Webber S. E.: Macromolecules 1996, 29, 6518. <https://doi.org/10.1021/ma960630e>
3e. Procházka K., Martin T. J., Webber S. E., Munk P.: Macromolecules 1996, 29, 6526. <https://doi.org/10.1021/ma9606317>
3f. Štěpánek M., Procházka K.: Langmuir 1999, 15, 8800. <https://doi.org/10.1021/la9903651>
3g. Štěpánek M., Procházka K., Brown W.: Langmuir 2000, 16, 2502. <https://doi.org/10.1021/la9910226>
3h. Tsisilianis C., Voulgaris D., Štěpánek M., Podhájecká K., Procházka K., Tuzar Z., Brown W.: Langmuir 2000, 16, 6868. <https://doi.org/10.1021/la000176e>
3i. Pleštil J., Kříž J., Tuzar Z., Procházka K., Melnichenko Yu. B., Wignall G. D., Talingting M. R., Munk P., Webber S. E.: Macromol. Chem. Phys. 2001, 202, 553. <https://doi.org/10.1002/1521-3935(20010201)202:4<553::AID-MACP553>3.0.CO;2-6>
3j. Štěpánek M., Podhájecká K., Tesařová E., Procházka K., Tuzar Z., Brown W.: Langmuir 2001, 17, 4240. <https://doi.org/10.1021/la010246x>
3k. Podhájecká K., Štěpánek M., Procházka K., Brown W.: Langmuir 2001, 17, 4245. <https://doi.org/10.1021/la010247p>
3l. Matějíček P., Uhlík F., Limpouchová Z., Procházka K., Tuzar Z., Webber S. E.: Macromolecules 2002, 35, 9487. <https://doi.org/10.1021/ma012074g>
3m. Matějíček P., Humpolíčková J., Procházka K., Tuzar Z., Špírková M., Hof M., Webber S. E.: J. Phys. Chem. B 2003, 107, 8232. <https://doi.org/10.1021/jp022221s>
4a. Viduna D., Limpouchová Z., Procházka K.: Macromolecules 1997, 30, 7263. <https://doi.org/10.1021/ma970002c>
4b. Limpouchová Z., Viduna D., Procházka K.: Macromolecules 1997, 30, 8027. <https://doi.org/10.1021/ma970001k>
4c. Jelínek K., Limpouchová Z., Procházka K.: Macromol. Theory Simul. 2000, 9, 703. <https://doi.org/10.1002/1521-3919(20001201)9:9<703::AID-MATS703>3.0.CO;2-G>
4d. Uhlík F., Limpouchová Z., Matějíček P., Procházka K., Tuzar Z., Webber S. E.: Macromolecules 2002, 35, 9497. <https://doi.org/10.1021/ma012073o>
5a. Allen R. C., Mandelkern L.: Polym. Bull. 1987, 17, 473. <https://doi.org/10.1007/BF00255621>
5b. Hager S. L., Macrury T. B.: J. Appl. Polym. Sci. 1980, 25, 1559. <https://doi.org/10.1002/app.1980.070250805>
5c. Ding N., Amis E. J.: Macromolecules 1991, 24, 3906. <https://doi.org/10.1021/ma00013a026>
6a. Magde D., Elson E. L., Webb W. W.: Phys. Rev. Lett. 1972, 29, 705. <https://doi.org/10.1103/PhysRevLett.29.705>
6b. Elson E. L., Magde D.: Biopolymers 1974, 13, 1. <https://doi.org/10.1002/bip.1974.360130102>
6c. Magde D., Elson E. L., Webb W. W.: Biopolymers 1974, 13, 29. <https://doi.org/10.1002/bip.1974.360130103>
7a. Bastiaens P. I. H., Pap E. H. W., Widengren J., Rigler R., Visser A. J. W. G.: J. Fluoresc. 1994, 4, 377. <https://doi.org/10.1007/BF01881462>
7b. Korlach J., Schwille P., Webb W. W., Feigenson G. W.: Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8461. <https://doi.org/10.1073/pnas.96.15.8461>
7c. Schwille P., Haupts U., Maiti S., Webb W. W.: Biophys. J. 1999, 77, 2251. <https://doi.org/10.1016/S0006-3495(99)77065-7>
7d. Král T., Langner M., Beneš M., Baczynska D., Ugorski M., Hof M.: Biophys. Chem. 2002, 95, 135. <https://doi.org/10.1016/S0301-4622(01)00253-8>
7e. Král T., Hof M., Langner M.: Biol. Chem. 2002, 383, 331. <https://doi.org/10.1515/BC.2002.036>
7f. Beneš M., Billy D., Hermens W. T., Hof M.: Biol. Chem. 2002, 383, 337. <https://doi.org/10.1515/BC.2002.037>
8a. Erhardt R., Boker A., Zettl H., Kaya H., Pyckhout-Hintzen W., Krausch G., Abetz V., Mueller A. H. E.: Macromolecules 2001, 34, 1069. <https://doi.org/10.1021/ma000670p>
8b. Zhao J. J., Bae S. C., Xie F., Granick S.: Macromolecules 2001, 34, 3123. <https://doi.org/10.1021/ma0100145>
9. Thompson N. L. in: Topics in Fluorescence Spectroscopy (J. R. Lakowicz, Ed.), Vol. 5. Plenum Press, New York 1991.
10a. Webb W. E. in: Fluorescence Correlation Spectroscopy. Theory and Applications (R. Riedler and E. S. Elson, Eds). Springer-Verlag, Berlin 2001.
10b. Hink M. A., van Hoek A., Visser A. J. W. G.: Langmuir 1999, 15, 992. <https://doi.org/10.1021/la980949n>
10c. Koppel D. E.: Phys. Rev. 1974, 10, 1938. <https://doi.org/10.1103/PhysRevA.10.1938>
10d. Kask P., Günter R., Axhausen P.: Eur. Biophys. J. 1997, 25, 163. <https://doi.org/10.1007/s002490050028>
10e. Meseth U., Wohland T., Rigler R., Vogel H.: Biophys. J. 1999, 76, 1619. <https://doi.org/10.1016/S0006-3495(99)77321-2>
10f. Edman L.: J. Phys. Chem. A 2000, 104, 6165. <https://doi.org/10.1021/jp000100r>
10g. Wohland T., Rigler R., Vogel H.: Biophys. J. 2001, 80, 2987. <https://doi.org/10.1016/S0006-3495(01)76264-9>
11. Kratochvíl P.: Classical Light Scattering in Polymer Solutions. Elsevier, Amsterdam 1987.
12. Chu B.: Laser Light Scattering, 2nd ed. Academic Press, New York 1991.
13. Humpolíčková J., Procházka K., Hof M.: Collect. Czech. Chem. Commun. 2003, 68, 2105. <https://doi.org/10.1135/cccc20032105>
14a. Bieze T. W. N., Barnes A. C., Huige C. J. M., Enderby J. E., Leyte J. C.: J. Phys. Chem. 1994, 98, 6568. <https://doi.org/10.1021/j100077a024>
14b. Hammouda B., Ho D., Kline S.: Macromolecules 2002, 25, 8578. <https://doi.org/10.1021/ma011657n>
14c. Polverari M., van de Ven T. G. M: J. Phys. Chem. 1996, 100, 13687. <https://doi.org/10.1021/jp960215o>
15a. Flory P.: Principles of Polymer Chemistry, Chap. XII. Cornell University Press, Ithaca 1971.
15b. Fisher M.: J. Phys. Soc. Jpn. 1969, 26(Suppl.), 44.
15c. de Gennes P. G.: Scaling Concepts in Polymer Physics, Chap. I. Cornell University Press, Ithaca 1979.
15d. Zhu J. Y., Eisenberg A., Lennox R. B.: J. Am. Chem. Soc. 1991, 113, 5583. <https://doi.org/10.1021/ja00015a011>
15e. Kajiyama T., Tanaka K., Takahara A.: Macromolecules 1995, 28, 3482. <https://doi.org/10.1021/ma00113a059>
15f. Jean Y. C., Zhang R. W., Cao H., Yuan J. P., Huang C. M., Nielsen B., Asoka-Kumar P.: Phys. Rev. B: Condens. Matter 1997, 56, R8459. <https://doi.org/10.1103/PhysRevB.56.R8459>
16a. Johnson C. A.: Digital Instrum. Rep. 1997, 7, AN09.
16b. Johnson C. A., Lenhoff A. M.: J. Colloid Interface Sci. 1996, 179, 587. <https://doi.org/10.1006/jcis.1996.0253>
17a. Fujii T., Nishikiori H., Tamura T.: Chem. Phys. Lett. 1995, 233, 424. <https://doi.org/10.1016/0009-2614(94)01477-D>
17b. del Monte F., Mackenzie J. D., Levy D.: Langmuir 2000, 16, 7377. <https://doi.org/10.1021/la000540+>
17c. MacDonald R. I.: J. Biol. Chem. 1990, 265, 13533.