Collect. Czech. Chem. Commun. 2003, 68, 2231-2282
https://doi.org/10.1135/cccc20032231

Molecular Interactions of Nucleic Acid Bases. A Review of Quantum-Chemical Studies

Jiří Šponera,b,* and Pavel Hobzab,*

a Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
b J. Heyrovský Institute of Physical Chemistry and Centre for Complex Molecular Systems and Biomolecules, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic

References

1a. Šponer J., Leszczynski J., Hobza P.: J. Phys. Chem. 1996, 100, 5590. <https://doi.org/10.1021/jp953306e>
1b. Hobza P., Šponer J.: Chem. Rev. 1999, 99, 3247. <https://doi.org/10.1021/cr9800255>
2. Ramakrishnan V., Moore P. B.: Curr. Opin. Struct. Biol. 2001, 11, 144. <https://doi.org/10.1016/S0959-440X(00)00184-6>
3. Schneider B., Berman H. M.: Biophys. J. 1995, 69, 2661. <https://doi.org/10.1016/S0006-3495(95)80136-0>
4. Drew H. R., Dickerson R. E.: J. Mol. Biol. 1981, 151, 535. <https://doi.org/10.1016/0022-2836(81)90009-7>
5a. Lippert B.: Coord. Chem. Rev. 2000, 200, 487. <https://doi.org/10.1016/S0010-8545(00)00260-5>
5b. Sigel A., Sigel H. (Eds): Metal Ions in Biological Systems, Vol. 32. Marcel Dekker, New York 1996.
6. Hobza P., Sandorfy C.: J. Am. Chem. Soc. 1987, 109, 1302. <https://doi.org/10.1021/ja00239a003>
7a. Bugg C. E., Thomas J. M., Sundaralingam M., Rao S. T.: Biopolymers 1971, 10, 175. <https://doi.org/10.1002/bip.360100113>
7b. Hunter C. A.: J. Mol. Biol. 1993, 230, 1025. <https://doi.org/10.1006/jmbi.1993.1217>
8a. Šponer J., Gabb H. A, Leszczynski J., Hobza P.: Biophys. J. 1997, 73, 76. <https://doi.org/10.1016/S0006-3495(97)78049-4>
8b. Šponer J., Florian J., Ng H. L., Šponer J. E., Špačková N.: Nucl. Acids Res. 2000, 28, 4893. <https://doi.org/10.1093/nar/28.24.4893>
9a. Yanson I. K., Teplitsky A. B., Sukhodub L. F.: Biopolymers 1979, 18, 1149. <https://doi.org/10.1002/bip.1979.360180510>
9b. Sukhodub L. F.: Chem. Rev. 1987, 87, 589. <https://doi.org/10.1021/cr00079a006>
9c. Desfrancois C., Abdoul-Carime H., Schulz C. P., Schermann J. P.: Science 1995, 269, 1707. <https://doi.org/10.1126/science.269.5231.1707>
9d. Schnier P. D., Klassen J. S., Stritmatter E. F., Williams E. R.: J. Am. Chem. Soc. 1998, 120, 9605. <https://doi.org/10.1021/ja973534h>
9e. Hoyau S., Norrman K., McMahon T. B., Ohanessian G.: J. Am. Chem. Soc. 1999, 121, 8864. <https://doi.org/10.1021/ja9841198>
9f. Nir E., Kleinermanns K., de Vries M. S.: Nature 2000, 408, 949. <https://doi.org/10.1038/35050053>
9g. Nir E., Plutzer C., Kleinermanns K., de Vries M. S.: Eur. Phys. J. D 2002, 20, 317. <https://doi.org/10.1140/epjd/e2002-00167-2>
9h. Nir E., Janzen C., Imhof P., Kleinermanns K., de Vries M. S.: Phys. Chem. Chem. Phys. 2002, 4, 740. <https://doi.org/10.1039/b110360c>
9i. Dong F., Miller R. E.: Science 2002, 298, 1227. <https://doi.org/10.1126/science.1076947>
10a. Kratochvíl M., Engkvist O., Šponer J., Jungwirth P., Hobza P.: J. Phys. Chem. A 1998, 102, 6921. <https://doi.org/10.1021/jp9816418>
10b. Kratochvíl M., Šponer J., Hobza P.: J. Am. Chem. Soc. 2000, 122, 3495. <https://doi.org/10.1021/ja9936060>
11a. Kuechler E., Derkosch J.: Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1966, 21, 209.
11b. Pitha J., Jones R. N., Pithova P.: Can. J. Chem. 1966, 44, 1045. <https://doi.org/10.1139/v66-155>
11c. Ts′o P. O. P, Melvin I. S., Olson A. C.: J. Am. Chem. Soc. 1963, 85, 1289. <https://doi.org/10.1021/ja00892a016>
11d. Gray D. M.: Biopolymers 1997, 42, 783; and references therein. <https://doi.org/10.1002/(SICI)1097-0282(199712)42:7<783::AID-BIP4>3.0.CO;2-P>
11e. SantaLucia J., Jr.: Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 1460. <https://doi.org/10.1073/pnas.95.4.1460>
11f. Newcomb L. F., Gellman S. H. L.: J. Am. Chem. Soc. 1994, 116, 4993. <https://doi.org/10.1021/ja00090a057>
11g. Sartorius J., Schneider H.-J.: J. Chem. Soc., Perkin Trans. 2 1997, 2319. <https://doi.org/10.1039/a702628e>
11h. Mizutani M., Kubo I., Jitsukawa K., Masuda H., Einaga H.: Inorg. Chem. 1999, 38, 420. <https://doi.org/10.1021/ic980438o>
11i. Allawi H. T., SantaLucia J.: Nucl. Acids Res. 1998, 26, 2694. <https://doi.org/10.1093/nar/26.11.2694>
11j. Nakano S., Fujimoto M., Hara H., Sugimoto N.: Nucl. Acids Res. 1999, 27, 2957. <https://doi.org/10.1093/nar/27.14.2957>
11k. Bommarito S., Peyret N., SantaLucia J.: Nucl. Acids Res. 2000, 28, 1929. <https://doi.org/10.1093/nar/28.9.1929>
12a. Cramer C. J., Truhlar D. G.: Chem. Rev. 1999, 99, 2161. <https://doi.org/10.1021/cr960149m>
12b. Luque F. J., LopezBes J. M., Cemeli J., Aroztegui M., Orozco M.: Theor. Chem. Acc. 1997, 96, 105. <https://doi.org/10.1007/s002140050210>
13. Florian J., Šponer J., Warshel A.: J. Phys. Chem. B 1999, 103, 884; and references therein. <https://doi.org/10.1021/jp983699s>
14a. Pohorille A., Burt S. K., MacElroy R. D.: J. Am. Chem. Soc. 1984, 10, 402. <https://doi.org/10.1021/ja00314a025>
14b. Danilov V. I., Tolokh I. S.: J. Biomol. Struct. Dyn. 1984, 2, 119. <https://doi.org/10.1080/07391102.1984.10507551>
14c. Cieplak P., Kollman P. A.: J. Am. Chem. Soc. 1988, 110, 3334. <https://doi.org/10.1021/ja00220a003>
14d. Friedman R. A., Honig B.: Biophys. J. 1995, 69, 1528. <https://doi.org/10.1016/S0006-3495(95)80023-8>
14e. Arora N., Jayram B.: J. Phys. Chem. B 1998, 102, 6139. <https://doi.org/10.1021/jp9813692>
14f. Luo R., Gilson H. S. R., Potter M. J., Gilson M. K.: Biophys. J. 2001, 80, 140. <https://doi.org/10.1016/S0006-3495(01)76001-8>
14g. Florian J., Goodman M. F., Warshel A.: J. Phys. Chem. B 2000, 104, 10092. <https://doi.org/10.1021/jp001760z>
15a. Barsky D., Kool E. T., Colvin M. E.: J. Biomol. Struct. Dyn. 1999, 16, 1119. <https://doi.org/10.1080/07391102.1999.10508321>
15b. Sivanesan D., Subramanian V., Nair B. U., Ramasami T.: Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem. 2000, 39, 132.
15c. Kabeláč M., Ryjáček F., Hobza P.: Phys. Chem. Chem. Phys. 2000, 2, 4906. <https://doi.org/10.1039/b007167f>
15d. Sivanesan D., Babu K., Gadre S. R., Subramanian V.: J. Phys. Chem. A 2000, 104, 10887. <https://doi.org/10.1021/jp0016986>
16. Šponer J., Berger I., Špačková N., Leszczynski J., Hobza P.: J. Biomol. Struct. Dyn. Conversation 11 2000, 2, 383.
17. Šponer J., Leszczynski J., Hobza P.: J. Biomol. Struct. Dyn. 1996, 14, 117. <https://doi.org/10.1080/07391102.1996.10508935>
18. Šponer J., Leszczynski J., Hobza P. in: Computational Chemistry – Reviews of Current Trends (J. Leszczynski, Ed.), p. 185. World Scientific Publisher, Singapore 1996.
19. Šponer J., Hobza P. in: Encyclopedia of Computational Chemistry (P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III and P. R. Schreiner, Eds), p. 777. John Wiley & Sons, Chichester 1998.
20. Šponer J., Leszczynski J., Hobza P. in: Theoretical Computional Chemistry (J. Leszczynski, Ed.), Vol. 8, p. 85. Elsevier, Oxford 1999.
21a. Trygubenko S., Bogdan T. V., Rueda M., Orozco M., Luque F. J., Šponer J., Slavíček P., Hobza P.: Phys. Chem. Chem. Phys. 2002, 4, 4192. <https://doi.org/10.1039/b202156k>
21b. Hanus M., Ryjáček F., Kabeláč M., Kubar T., Trygubenko S., Bogdan T. V., Hobza P.: J. Am. Chem. Soc. 2003, 125, 7678. <https://doi.org/10.1021/ja034245y>
21c. Hanus M., Ryjáček F., Kabeláč M., Rejnek J., Hobza P.: Phys. Chem. Chem. Phys. 2003, 5, in press.
22a. Leszczynski J.: Int. J. Quantum Chem., Quantum Biol. Symp. 1992, 19, 43. <https://doi.org/10.1002/qua.560440708>
22b. Šponer J., Hobza P.: J. Phys. Chem. 1994, 98, 3161. <https://doi.org/10.1021/j100063a019>
22c. Bludsky O., Šponer J., Leszczynski J., Špirko V., Hobza P.: J. Chem. Phys. 1996, 105, 11042. <https://doi.org/10.1063/1.472904>
22d. Šponer J., Hobza P.: Int. J. Quantum Chem. 1996, 57, 959. <https://doi.org/10.1002/(SICI)1097-461X(1996)57:5<959::AID-QUA16>3.0.CO;2-S>
22e. Dong F., Miller R. E.: Science 2002, 298, 1227. <https://doi.org/10.1126/science.1076947>
23. Šponer J., Hobza P.: J. Am. Chem. Soc. 1994, 116, 709. <https://doi.org/10.1021/ja00081a036>
24. Šponer J., Florian J., Leszczynski J., Hobza P.: J. Biomol. Struct. Dyn. 1996, 13, 827. <https://doi.org/10.1080/07391102.1996.10508895>
25a. Luisi B., Orozco M., Šponer J., Luque F. J., Shakked Z.: J. Mol. Biol. 1998, 279, 1123. <https://doi.org/10.1006/jmbi.1998.1833>
25b. Vlieghe D., Šponer J., van Meervelt L.: Biochemistry 1999, 38, 16443. <https://doi.org/10.1021/bi9907882>
25c. Špačková N., Cheatham T. E., Ryjáček F., Lankas F., van Meervelt L., Hobza P., Šponer J.: J. Am. Chem. Soc. 2003, 125, 1759. <https://doi.org/10.1021/ja025660d>
25d. Šponer J., Mokdad A., Šponer J. E., Špačková N., Leszczynski J., Leontis N. B.: J. Mol. Biol. 2003, 330, 967. <https://doi.org/10.1016/S0022-2836(03)00667-3>
26. Ryjáček F., Kubar T., Hobza P.: J. Comput. Chem. 2003, 24, 1891. <https://doi.org/10.1002/jcc.10352>
27. Šponer J., Kypr J.: Int. J. Biol. Macromol. 1994, 16, 3. <https://doi.org/10.1016/0141-8130(94)90003-5>
28a. Šponer J., Sabat M., Gorb L., Leszczynski J., Lippert B., Hobza P.: J. Phys. Chem. B 2000, 104, 7535. <https://doi.org/10.1021/jp001711m>
28b. Soliva R., Laughton C. A., Luque F. J., Orozco M.: J. Am. Chem. Soc. 1998, 120, 11226. <https://doi.org/10.1021/ja981121q>
28c. Štefl R., Koča J.: J. Am. Chem. Soc. 2000, 122, 5025. <https://doi.org/10.1021/ja9912170>
29. Šponer J., Leszczynski J., Hobza P.: J. Phys. Chem. 1996, 100, 1965. <https://doi.org/10.1021/jp952760f>
30. Šponer J., Leszczynski J.,Vetterl V., Hobza P.: J. Biomol. Struct. Dyn. 1996, 13, 695. <https://doi.org/10.1080/07391102.1996.10508882>
31a. Šponer J., Leszczynski J., Hobza P.: J. Phys. Chem. A 1997, 101, 9489. <https://doi.org/10.1021/jp9720404>
31b. Šponer J., Burda J. V., Mejzlík P., Leszczynski J., Hobza P.: J. Biomol. Struct. Dyn. 1997, 14, 613. <https://doi.org/10.1080/07391102.1997.10508161>
32a. Hobza P., Šponer J.: Chem. Phys. Lett. 1998, 288, 7. <https://doi.org/10.1016/S0009-2614(98)00238-3>
32b. Hobza P., Šponer J., Cubero E., Orozco M., Luque F. J.: J. Phys. Chem. B 2000, 104, 6286. <https://doi.org/10.1021/jp0007134>
32c. Elstner M., Hobza P., Frauenheim T., Suhai S., Kaxiras E.: J. Chem. Phys. 2001, 114, 5149. <https://doi.org/10.1063/1.1329889>
32d. Hobza P., Špirko V.: Phys. Chem. Chem. Phys. 2003, 5, 1290. <https://doi.org/10.1039/b210223d>
33. Toczylowski R. R., Cybulski S. M.: J. Phys. Chem. A 2003, 107, 418. <https://doi.org/10.1021/jp021805r>
34a. Šponer J., Hobza P.: Chem. Phys. Lett. 1997, 267, 263. <https://doi.org/10.1016/S0009-2614(97)00118-8>
34b. Hobza P., Šponer J.: J. Am. Chem. Soc. 2002, 124, 11802. <https://doi.org/10.1021/ja026759n>
34c. Leininger M. L., Nielsen I. M. B., Colvin M. E., Janssen C. L.: J. Phys. Chem. A 2002, 106, 3850. <https://doi.org/10.1021/jp013866f>
35. Brameld K., Dasgupta S., Goddard III W. A.: J. Phys. Chem. B 1997, 101, 4851. <https://doi.org/10.1021/jp970199a>
36a. Hobza P., Kabeláč M., Šponer J., Mejzlík P., Vondrášek J.: J. Comput. Chem. 1997, 18, 1136. <https://doi.org/10.1002/(SICI)1096-987X(19970715)18:9<1136::AID-JCC3>3.0.CO;2-S>
36b. Jurečka P., Hobza P.: J. Am. Chem. Soc., 2003, 125, in press.
36c. Hobza P., Riehn C., Weichert A., Brutschy B.: Chem. Phys. 2002, 283, 331. <https://doi.org/10.1016/S0301-0104(02)00569-4>
36d. Šponer J., Hobza P.: J. Phys. Chem. A 2000, 104, 4592. <https://doi.org/10.1021/jp9943880>
37. Kroon-Batenburg L. M. J., van Duijneveldt F. B.: J. Mol. Struct. 1985, 121, 185. <https://doi.org/10.1016/0166-1280(85)80058-0>
38. Boys S. F., Bernardi B.: Mol. Phys. 1970, 19, 553. <https://doi.org/10.1080/00268977000101561>
39. van Duineveldt F. B., van Duineveldt-van de Rijdt J. G. C. M., van Lenthe J. H.: Chem. Rev. 1994, 94, 1873. <https://doi.org/10.1021/cr00031a007>
40. Šponer J., Leszczynski J., Hobza P.: J. Comput. Chem. 1996, 17, 841. <https://doi.org/10.1002/(SICI)1096-987X(199605)17:7<841::AID-JCC8>3.0.CO;2-S>
41a. Wesolowski T. A., Parisel O., Ellinger Y., Weber J.: J. Phys. Chem. A 1997, 101, 7818. <https://doi.org/10.1021/jp970586k>
41b. Kurita N., Araki M., Nakao K., Kobayashi K.: Int. J. Quantum Chem. 2000, 76, 677. <https://doi.org/10.1002/(SICI)1097-461X(2000)76:6<677::AID-QUA1>3.0.CO;2-C>
41c. Williams H. L., Chabalowski C. F.: J. Phys. Chem. A 2001, 105, 646. <https://doi.org/10.1021/jp003883p>
41d. Perez-Jorda J. A., San-Fabian E., Perez-Jimenez J.: J. Chem. Phys. 1999, 110, 1916. <https://doi.org/10.1063/1.477858>
42. Alhambra C., Luque F. J., Gago F., Orozco O.: J. Phys. Chem. B 1997, 101, 3846. <https://doi.org/10.1021/jp962626a>
43a. Kratochvíl M., Engkvist O., Vacek J., Jungwirth P., Hobza P.: Phys. Chem. Chem. Phys. 2000, 2, 2419. <https://doi.org/10.1039/b001022g>
43b. Gervasio F. L., Procacci P., Cardini G., Guarna A., Giolitti A., Schettino V.: J. Phys. Chem. B 2000, 104, 1108. <https://doi.org/10.1021/jp992208g>
43c. Kabeláč M., Hobza P.: J. Phys. Chem. B 2001, 105, 5804. <https://doi.org/10.1021/jp0104886>
43d. Kratochvíl M., Šponer J., Hobza P.: J. Am. Chem. Soc. 2000, 122, 3495. <https://doi.org/10.1021/ja9936060>
43e. Kabeláč M., Hobza P.: Chem. Eur. J. 2001, 7, 2067. <https://doi.org/10.1002/1521-3765(20010518)7:10<2067::AID-CHEM2067>3.0.CO;2-S>
44a. Šponer J., Šponer J. E., Gorb L., Leszczynski J., Lippert B.: J. Phys. Chem A 1999, 103, 11406. <https://doi.org/10.1021/jp992337x>
44b. Šponer J. E., Glahe F., Leszczynski J., Lippert B., Šponer J.: Inorg. Chem. 2000, 269, 2868.
44c. Šponer J., Šponer J. E., Leszczynski J.: J. Biomol. Struct. Dyn. 2000, 17, 1087. <https://doi.org/10.1080/07391102.2000.10506594>
45. Burda J. V., Šponer J., Hobza P.: J. Phys. Chem. 1996, 100, 7250. <https://doi.org/10.1021/jp952941h>
46a. Burda J. V., Šponer J., Leszczynski J., Hobza P.: J. Phys. Chem. B 1997, 101, 9670. <https://doi.org/10.1021/jp963753+>
46b. Šponer J., Burda J. V., Sabat M., Leszczynski J., Hobza P.: J. Phys. Chem. A 1998, 102, 5951. <https://doi.org/10.1021/jp980769m>
46c. Šponer J., Sabat M., Burda J. V., Leszczynski J., Hobza P.: J. Biomol. Struct. Dyn. 1998, 16, 139. <https://doi.org/10.1080/07391102.1998.10508235>
47. Šponer J., Burda J. V., Leszczynski J., Hobza P.: J. Biomol. Struct. Dyn. 1999, 17, 61. <https://doi.org/10.1080/07391102.1999.10508341>
48a. Sigel R. K. O., Lippert B.: Chem. Commun. 1999, 2167. <https://doi.org/10.1039/a902650i>
48b. Sigel R. K. O., Freisinger E., Lippert B.: J. Biol. Inorg. Chem. 2000, 5, 287. <https://doi.org/10.1007/PL00010657>
49. Han W. H., Dlakic M., Zhu Y. W. J., Lyndsay S. M., Harrington R. E.: Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 10565. <https://doi.org/10.1073/pnas.94.20.10565>
50a. Špačková N., Berger I., Šponer J.: J. Am. Chem. Soc. 1999, 121, 5519. <https://doi.org/10.1021/ja984449s>
50b. Štefl R., Špačková N., Berger I., Šponer J.: Biophys. J. 2001, 80, 455. <https://doi.org/10.1016/S0006-3495(01)76028-6>
50c. Špačková N., Berger I., Šponer J.: J. Am. Chem. Soc. 2001, 123, 3295. <https://doi.org/10.1021/ja002656y>
51. Burda J. V., Šponer J., Leszczynski J.: J. Biol. Inorg. Chem. 2000, 5, 178. <https://doi.org/10.1007/s007750050362>
52a. Schmidt K. S., Reedijk J., Weisz K., Janke E. M. B, Šponer J. E., Šponer J., Lippert B.: Inorg. Chem. 2002, 41, 2855. <https://doi.org/10.1021/ic0109602>
52b. Burda J. V., Šponer J., Hrabáková J., Zeizinger M., Leszczynski J.: J. Phys. Chem. B 2003, 107, 5349. <https://doi.org/10.1021/jp027850g>
53. Lippert B.: J. Chem. Soc., Dalton Trans. 1997, 3971; and references therein. <https://doi.org/10.1039/a702916k>
54a. Florian J., Leszczynski J.: J. Am. Chem. Soc. 1996, 118, 3010. <https://doi.org/10.1021/ja951983g>
54b. Bertran J., Oliva A., Rodriguez-Santiago L., Sodupe M.: J. Am. Chem. Soc. 1998, 120, 8159. <https://doi.org/10.1021/ja9804417>
54c. Chandra A. K., Nguyen M. T., Uchimaru T., Zeegers-Huyskens T.: J. Phys. Chem. A 1999, 103, 8853. <https://doi.org/10.1021/jp991660x>
54d. Kawahara S., Uchimaru T.: Chem. Phys. Phys. Chem. 2000, 2, 869. <https://doi.org/10.1039/b001507p>
54e. Plokhotnichenko A. M., Radchenko E. D., Stepanian S. G., Adamowicz L.: J. Phys. Chem. A 1999, 103, 11052. <https://doi.org/10.1021/jp991869a>
54f. Meyer M., Suhnel J.: J. Biomol. Struct. Dyn. 1997, 15, 619. <https://doi.org/10.1080/07391102.1997.10508972>
54g. Brandl M., Meyer M., Suhnel J.: J. Am. Chem. Soc. 1999, 121, 2605. <https://doi.org/10.1021/ja9829923>
54h. Raimondi M., Famulari A., Gaininetti E.: Int. J. Quantum Chem. 1999, 74, 259. <https://doi.org/10.1002/(SICI)1097-461X(1999)74:2<259::AID-QUA21>3.0.CO;2-3>
54i. Kawahara S., Wada T., Kawauchi S., Uchimaru T., Sekine M.: J. Phys. Chem. A 1999, 103, 8516. <https://doi.org/10.1021/jp9914525>
54j. Alagona G., Ghio C., Giolitti A., Monti S.: Theor. Chem. Acc. 1999, 101, 143. <https://doi.org/10.1007/s002140050421>
54k. McCarthy W., Plokhotnichenko A. M., Radchenko E. D., Smets J., Smith D. M. A., Stepanian S. G., Adamowicz L.: J. Phys. Chem. A 1997, 101, 7208. <https://doi.org/10.1021/jp971444t>
54l. Guerra C. F., Bickelhaupt F. M., Snijders J. G., Bearends E. J.: J. Am. Chem. Soc. 2000, 122, 4117. <https://doi.org/10.1021/ja993262d>
54m. Bondarev D. A., Skawinski W. J., Venanzi C. A.: J. Phys. Chem. B 2000, 104, 815. <https://doi.org/10.1021/jp9926140>
54n. Gago F.: Methods Enzymol. 1998, 14, 277. <https://doi.org/10.1006/meth.1998.0584>
54o. Colson A.-O., Sevilla M. D.: Int. J. Radiat. Biol. 1995, 67, 627. <https://doi.org/10.1080/09553009514550751>
54p. Gu J. D., Leszczynski J.: J. Phys. Chem. A 2000, 104, 6308. <https://doi.org/10.1021/jp000591f>
54q. Meyer M., Steinke T., Brandl M., Suhnel J.: J. Comput. Chem. 2001, 22, 109. <https://doi.org/10.1002/1096-987X(20010115)22:1<109::AID-JCC11>3.0.CO;2-5>
54r. Famulari A., Moroni F., Sironi M., Raimondi M.: Comput. Chem. 2000, 24, 341. <https://doi.org/10.1016/S0097-8485(99)00074-1>
54s. Guerra C. F., Bickelhaupt F. M., Snijders J. G., Baerends E. J.: Chem. Eur. J. 1999, 5, 3581. <https://doi.org/10.1002/(SICI)1521-3765(19991203)5:12<3581::AID-CHEM3581>3.0.CO;2-Y>
55. Cheatham III T. E., Miller J. L., Fox T., Darden T. A., Kollman P. A.: J. Am. Chem. Soc. 1995, 117, 4193. <https://doi.org/10.1021/ja00119a045>
56a. Cheatham T. E., Young M. A.: Biopolymers 2000, 56, 232. <https://doi.org/10.1002/1097-0282(2000)56:4<232::AID-BIP10037>3.0.CO;2-H>
56b. Kollman P. A., Massova I., Reyes C., Kuhn B., Huo S. H., Chong L., Lee M., Lee T., Duan Y., Wang W., Donini O., Cieplak P., Srinivasan J., Case D. A., Cheatham T. E. L.: Acc. Chem. Res. 2000, 33, 889. <https://doi.org/10.1021/ar000033j>
56c. Srinivasan J., Cheatham T. E., Cieplak P., Kollman P. A., Case D. A.: J. Am. Chem. Soc. 1998, 120, 9401. <https://doi.org/10.1021/ja981844+>
57. Darden T., York D., Pedersen L.: J. Chem. Phys. 1993, 98, 10089. <https://doi.org/10.1063/1.464397>
58. Hunenberger P. H., McCammon J. A.: Biophys. Chem. 1999, 78, 69. <https://doi.org/10.1016/S0301-4622(99)00007-1>
59a. Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A.: J. Am. Chem. Soc. 1995, 117, 5179. <https://doi.org/10.1021/ja00124a002>
59b. MacKerell A. D., Workiewicz-Kuczera J., Karplus M.: J. Am. Chem. Soc. 1995, 117, 11946. <https://doi.org/10.1021/ja00153a017>
60. Haider S., Parkinson G. N., Neidle S.: J. Mol. Biol. 2002, 320, 189. <https://doi.org/10.1016/S0022-2836(02)00428-X>
61a. Csaszar K., Špačková N., Štefl R., Šponer J., Leontis N. B.: J. Mol. Biol. 2001, 313, 1073. <https://doi.org/10.1006/jmbi.2001.5100>
61b. Reblová K., Špačková N., Štefl R., Csaszar K., Koča J., Leontis N. B., Šponer J.: Biophys J. 2003, 84, 3564. <https://doi.org/10.1016/S0006-3495(03)75089-9>
62. Štefl R., Cheatham III T. E., Špačková N., Fadrna E., Berger I., Koča J., Šponer J.: Biophys. J. 2003, 85, 1787. <https://doi.org/10.1016/S0006-3495(03)74608-6>