Collect. Czech. Chem. Commun. 2003, 68, 211-239
https://doi.org/10.1135/cccc20030211

Standardized Medium-Size Basis Sets for Calculations of Molecular Electric Properties: Group IIIA

Ivan Černušáka, Vladimir Kellöa,* and Andrzej J. Sadlejb

a Department of Physical Chemistry, Faculty of Sciences, Comenius University, Mlynska dolina, SK-842 15 Bratislava, Slovakia
b Department of Quantum Chemistry, Institute of Chemistry, Nicolaus Copernicus University, PL-87 100 Torun, Poland

References

1. Huzinaga S.: Comput. Phys. Rep. 1985, 2, 279. <https://doi.org/10.1016/0167-7977(85)90003-6>
2. Feller D., Davidson E. R. in: Reviews in Computational Chemistry (K. B. Lipkowitz and D. B. Boyd, Eds), p. 1. VCH, New York 1990.
3. Wilson S.: A Specialist Periodical Report. Chemical Modelling, Applications and Theory, Vol. 1, p. 364. Royal Society of Chemistry, London 2000.
4. Boys S. F.: Proc. R. Soc. London, Ser. A 1950, 200, 542. <https://doi.org/10.1098/rspa.1950.0036>
5. Kutzelnigg W.: Int J. Quantum Chem. 1994, 51, 447. <https://doi.org/10.1002/qua.560510612>
6. Saunders V. R. in: Methods in Computational Physics (G. H. F. Diercksen and S. Wilson, Eds), NATO ASI Series, Series C, Vol. 113, p. 1. Reidel, Dordrecht 1983.
7. Huzinaga S.: J. Chem. Phys. 1965, 42, 1293. <https://doi.org/10.1063/1.1696113>
8. van Duijneveldt F.: IBM J. Res. Dev. 1971, 945.
9. Gropen O.: J. Comput. Chem. 1987, 7, 982. <https://doi.org/10.1002/jcc.540080708>
10. Almlöf J., Taylor P. R.: J. Chem. Phys. 1987, 87, 4070. <https://doi.org/10.1063/1.451917>
11. Dunning T. H., Jr.: J. Chem. Phys. 1989, 90, 1007. <https://doi.org/10.1063/1.456153>
12. Widmark P.-O., Malmquist P.-Å., Roos B. O.: Theor. Chim. Acta 1990, 77, 291. <https://doi.org/10.1007/BF01120130>
13. Widmark P.-O., Person J. B., Roos B. O.: Theor. Chim. Acta 1990, 79, 419. <https://doi.org/10.1007/BF01112569>
14. Woon D. E., Dunning T. H., Jr.: J. Chem. Phys. 1993, 98, 1358. <https://doi.org/10.1063/1.464303>
15. Woon D. E., Dunning T. H., Jr.: J. Chem. Phys. 1994, 100, 2975. <https://doi.org/10.1063/1.466439>
16. Wilson A. K., van Mourik T., Dunning T. H., Jr.: J. Mol. Struct. (THEOCHEM) 1996, 388, 339. <https://doi.org/10.1016/S0166-1280(96)80048-0>
17. Jankowski K., Becherer R., Scharf P., Schiffer H., Ahlrichs R.: J. Chem. Phys. 1985, 82, 1413. <https://doi.org/10.1063/1.448464>
18. Ahlrichs R., Scharf P., Jankowski K.: Chem. Phys. Lett. 1985, 98, 381.
19a. Bardo R. D., Ruedenberg K.: J. Chem. Phys. 1973, 59, 5956. <https://doi.org/10.1063/1.1679964>
19b. Bardo R. D., Ruedenberg K.: J. Chem. Phys. 1973, 59, 5966. <https://doi.org/10.1063/1.1679965>
20. Feller D., Ruedenberg K.: Theor. Chim. Acta 1979, 52, 231. <https://doi.org/10.1007/BF00547681>
21. Schmidt M. W., Ruedenberg K.: J. Chem. Phys. 1979, 71, 3951. <https://doi.org/10.1063/1.438165>
22. Kobus J., Moncrieff D., Wilson S.: Phys. Rev. A: At., Mol., Opt. Phys. 2000, 62, 062503. <https://doi.org/10.1103/PhysRevA.62.062503>
23. Buckingham A. D. in: Intermolecular Interactions: From Diatomics to Biopolymers (B. Pullman, Ed.), p. 1. Wiley, New York 1978.
24. Stone A. J.: The Theory of Intermolecular Forces. Clarendon Press, Oxford 1996.
25. Sadlej A. J.: Collect. Czech. Chem. Commun. 1988, 53, 1995; Part I of the series, Pol sets for H, C–F. <https://doi.org/10.1135/cccc19881995>
26. Sadlej A. J.: Chem. Phys. Lett. 1977, 47, 50. <https://doi.org/10.1016/0009-2614(77)85304-9>
27. Sadlej A. J.: Acta Phys. Pol., A 1978, 53, 297.
28. Roos B. O., Sadlej A. J.: Chem. Phys. 1985, 94, 43. <https://doi.org/10.1016/0301-0104(85)85064-3>
29. The first paper on the generation of PolX basis sets was published in the special issue of Collect. Czech. Chem. Commun. dedicated to Professor Rudolf Zahradník on the occasion of his 60th birthday.
30. Sadlej A. J.: Theor. Chim. Acta 1991, 79, 123; Part II of the series, PolH, PolC–PolF, PolSi–PolCl basis sets. <https://doi.org/10.1007/BF01127101>
31. Sadlej A. J., Urban M.: J. Mol. Struct. (THEOCHEM) 1991, 234, 147; Part III of the series, Pol sets for alkali (Li, Na, K) and alkaline-earth (Be, Mg, Ca) atoms. <https://doi.org/10.1016/0166-1280(91)89010-X>
32. Sadlej A. J.: Theor. Chim. Acta 1991, 81, 45; Part IV of the series, PolGe–PolBr basis sets. <https://doi.org/10.1007/BF01113377>
33. Sadlej A. J.: Theor. Chim. Acta 1992, 81, 339; Part V of the series, PolSn–PolI basis sets. <https://doi.org/10.1007/BF01118573>
34. Sadlej A. J., Urban M., Gropen O.: Phys. Rev. A: At., Mol., Opt. Phys. 1991, 44, 5547; Pol basis sets for Ca, Sr, and Ba. <https://doi.org/10.1103/PhysRevA.44.5547>
35. Kellö V., Sadlej A. J.: Theor. Chim. Acta 1992, 83, 351; Part VI of the series, PolPb–PolAt basis sets. <https://doi.org/10.1007/BF01113061>
36. Kellö V., Sadlej A. J., Faegri K., Jr.: Phys. Rev. A: At., Mol., Opt. Phys. 1993, 47, 1715; Pol basis set for Fr. <https://doi.org/10.1103/PhysRevA.47.1715>
37. Neogrády P., Kellö V., Urban M., Sadlej A. J.: Theor. Chim. Acta 1996, 93, 101; Part VII of the series, Pol sets for Cu, Ag, and Au. <https://doi.org/10.1007/BF01113551>
38. Kellö V., Sadlej A. J.: Theor. Chim. Acta 1995, 91, 353; Part VIII of the series, Pol sets for Zn, Cd, and Hg. <https://doi.org/10.1007/BF01133080>
39. Pluta T., Sadlej A. J.: Chem. Phys. Lett. 1998, 297, 391. <https://doi.org/10.1016/S0009-2614(98)01132-4>
40. Woliński K., Karlström G., Sadlej A. J.: Mol. Phys. 1991, 72, 425. <https://doi.org/10.1080/00268979100100331>
41. The PolX and HyPolX basis sets can be obtained via anonymous ftp from heracles.cto.us.edu.pl or directly from the authors (e-mail: [email protected] (T. Pluta), [email protected] (A. J. Sadlej).
42. All available PolX basis sets for nonrelativistic calculations can be found on the web page http://molpir.fns.uniba.sk/Pol.txt.
43. Andersson K., Barysz M., Bernhardsson A., Blomberg M. R. A., Boussard P., Cooper D. L., Fleig T., Fülscher M. P., Hess B. A., Karlström G., Lindh R., Malmqvist P.-Å., Neogrady P., Olsen J., Roos B. O., Sadlej A. J., Schimmelpfennig B., Schütz M., Seijo L., Serrano-Andrés L., Siegbahn P. E. M., Stålring J., Thorsteinsson T., Veryazov V., Wahlgren U., Widmark P.-O.: MOLCAS, System of Quantum Chemistry Programs, Release 5. Theoretical Chemistry, University of Lund, Lund 2000.
44. Pluta T.: Mol. Phys. 2001, 99, 1535. <https://doi.org/10.1080/00268970110058283>
45. Kellö V., Sadlej A. J.: J. Chem. Phys. 1990, 93, 8122. <https://doi.org/10.1063/1.459342>
46. Sadlej A. J., Urban M.: Chem. Phys. Lett. 1991, 176, 293. <https://doi.org/10.1016/0009-2614(91)90033-6>
47. Kellö V., Sadlej A. J.: Theor. Chim. Acta 1996, 94, 93.
48. Miadoková I., Kellö V., Sadlej A. J.: Theor. Chem. Acc. 1997, 96, 166.
49. Douglas M., Kroll N. M.: Ann. Phys. 1974, 82, 89. <https://doi.org/10.1016/0003-4916(74)90333-9>
50. Hess B. A.: Phys. Rev. A: At., Mol., Opt. Phys. 1985, 32, 756. <https://doi.org/10.1103/PhysRevA.32.756>
51. Hess B. A.: Phys. Rev. A: At., Mol., Opt. Phys. 1986, 33, 3742. <https://doi.org/10.1103/PhysRevA.33.3742>
52. Barysz M., Sadlej A. J.: J. Mol. Struct. (THEOCHEM) 2001, 573, 181. <https://doi.org/10.1016/S0166-1280(01)00542-5>
53. The PolX_dk (and HyPolX_dk) basis sets for relativistic calculations within the DK approximation can be obtained via anonymous ftp from heracles.cto.us.edu.pl or directly from the authors (e-mail: [email protected] (T. Pluta), [email protected] (A. J. Sadlej).
54. All available PolX_dk (HyPolX_dk) basis sets for relativistic DK calculations can be found on the web page http://molpir.fns.uniba.sk/Pol_dk.txt.
55. Neogrády P., Sadlej A. J.: Unpublished results.
56. PolX_dk (HyPolX_dk) basis sets are also available for elements of Groups VIA and VIIA and for rare gas atoms.
57. Heitler W., London F.: Z. Phys. 1927, 44, 455. <https://doi.org/10.1007/BF01397394>
58. Gerratt J., Mills I. M.: J. Chem. Phys. 1968, 49, 1719. <https://doi.org/10.1063/1.1670299>
59. Thomsen K., Swanstrøm P.: Mol. Phys. 1973, 26, 735. <https://doi.org/10.1080/00268977300102051>
60. Pulay P. in: Application of Electronic Structure Theory (H. F. Schaefer, Ed.), p. 153. Plenum Press, New York 1977.
61. See collection of articles in Geometrical Derivatives of Energy Surfaces and Molecular Properties (P. Jørgensen and J. Simons, Eds), NATO ASI Series, Series C, Vol. 166. Reidel, Dordrecht 1985.
62. Schlegel H. B. in: Modern Electronic Structure Theory (D. R. Yarkony, Ed.), Part I, p. 459. World Scientific, Singapore 1995.
63. Pulay P. in: Modern Electronic Structure Theory (D. R. Yarkony, Ed.), Part II, p. 1191. World Scientific, Singapore 1995.
64. London F.: J. Phys. Radium 1937, 8, 397. <https://doi.org/10.1051/jphysrad:01937008010039700>
65. Ditchfield R.: Mol. Phys. 1974, 27, 789; and references therein. <https://doi.org/10.1080/00268977400100711>
66. Woliński K., Hinton J. F., Pulay P.: J. Am. Chem. Soc. 1990, 112, 8251; and references therein. <https://doi.org/10.1021/ja00179a005>
67. Hassé H. R.: Proc. Cambridge Philos. Soc. 1931, 27, 66. <https://doi.org/10.1017/S0305004100009348>
68. Slater J. C., Kirkwood J. G.: Phys. Rev. 1931, 37, 682. <https://doi.org/10.1103/PhysRev.37.682>
69. Pople J. A., Schofield P.: Philos. Mag. 2, 591.
70. Moccia R.: Chem. Phys. Lett. 1970, 5, 260. <https://doi.org/10.1016/0009-2614(70)85134-X>
71. Hudis J. A., Ditchfield R.: Chem. Phys. 1984, 86, 455. <https://doi.org/10.1016/0301-0104(84)80032-4>
72. Sadlej A. J.: Mol. Phys. 1977, 34, 731. <https://doi.org/10.1080/00268977700102061>
73. Sadlej A. J.: Theor. Chim. Acta 1978, 47, 205. <https://doi.org/10.1007/BF00577162>
74. Epstein S. T., Sadlej A. J.: Int. J. Quantum Chem. 1979, 15, 147. <https://doi.org/10.1002/qua.560150203>
75. Dodds J. L., McWeeny R., Sadlej A. J.: Mol. Phys. 1977, 34, 1779. <https://doi.org/10.1080/00268977700102961>
76. Jaszuński M., Roos B. O.: Mol. Phys. 1984, 52, 1209. <https://doi.org/10.1080/00268978400101881>
77. Raffenetti R. C.: J. Chem. Phys. 1973, 58, 4452. <https://doi.org/10.1063/1.1679007>
78. Almlöf J., Helgaker T., Taylor P. R.: J. Chem. Phys. 1988, 92, 3029. <https://doi.org/10.1021/j100322a003>
79. Okniński A., Sadlej A. J.: Acta Phys. Pol., A 1975, 48, 435.
80. Pluta T., Sadlej A. J.: J. Chem. Phys. 2001, 114, 136. <https://doi.org/10.1063/1.1328398>
81. Werner H.-J., Meyer W.: Mol. Phys. 1976, 31, 855. <https://doi.org/10.1080/00268977600100651>
82. Werner H.-J., Meyer W.: Phys. Rev. A: At., Mol., Opt. Phys. 1976, 13, 13. <https://doi.org/10.1103/PhysRevA.13.13>
83. Reinsch E.-A., Meyer W.: Phys. Rev. A: At., Mol., Opt. Phys. 1976, 14, 915. <https://doi.org/10.1103/PhysRevA.14.915>
84. Perez J. J., Sadlej A. J.: J. Mol. Struct. (THEOCHEM) 1996, 371, 31. <https://doi.org/10.1016/S0166-1280(96)04665-9>
85. Neogrády P., Kellö V., Urban M., Sadlej A. J.: Int. J. Quantum Chem. 1997, 63, 557. <https://doi.org/10.1002/(SICI)1097-461X(1997)63:2<557::AID-QUA25>3.0.CO;2-3>
86. Cowan R. D., Griffin D. C.: J. Am. Opt. Soc. 1976, 66, 1010. <https://doi.org/10.1364/JOSA.66.001010>
87. Kellö V., Sadlej A. J., Hess B. A.: J. Chem. Phys. 1996, 105, 1995. <https://doi.org/10.1063/1.472067>
88. Kellö V., Urban M., Sadlej A. J.: Chem. Phys. Lett. 1996, 253, 383. <https://doi.org/10.1016/0009-2614(96)00265-5>
89. Kellö V., Sadlej A. J.: Int. J. Quantum Chem. 1998, 68, 159. <https://doi.org/10.1002/(SICI)1097-461X(1998)68:3<159::AID-QUA3>3.0.CO;2-U>
90. Barysz M., Urban M.: Adv. Quantum Chem. 1997, 28, 257. <https://doi.org/10.1016/S0065-3276(08)60220-8>
91. Huzinaga S.: Technical Report. Department of Chemistry, University of Alberta, Edmonton 1971.
92. Urban M., Sadlej A. J.: Mol. Phys. 1997, 92, 587. <https://doi.org/10.1080/00268979709482130>
93. Huzinaga S.: J. Chem. Phys. 1977, 66, 4245. <https://doi.org/10.1063/1.434469>
94. Huzinaga S.: Technical Report. Department of Chemistry, University of Alberta, Edmonton 1976.
95. Neogrády P., Urban M., Hubač I.: J. Chem. Phys. 1992, 97, 5074. <https://doi.org/10.1063/1.463828>
96. Neogrády P., Urban M., Hubač I.: J. Chem. Phys. 1994, 100, 3706. <https://doi.org/10.1063/1.466359>
97. Neogrády P., Urban M.: Int. J. Quantum Chem. 1995, 55, 187. <https://doi.org/10.1002/qua.560550214>
98. Urban M., Neogrády P., Hubač I. in: Recent Advances in Coupled-Cluster Methods (R. J. Bartlett, Ed.), p. 275. World Scientific, Singapore 1997.
99. Cohen H. D., Roothaan C. C. J.: J. Chem. Phys. 1965, 43, 534.
100. McLean A. D., Yoshimine M.: J. Chem. Phys. 1967, 46, 3682. <https://doi.org/10.1063/1.1841276>
101. Černušák I., Diercksen G. H. F., Sadlej A. J.: Phys. Rev. A: At., Mol., Opt. Phys. 1986, 33, 814. <https://doi.org/10.1103/PhysRevA.33.814>
102. Kobus J.: Comput. Phys. Commun. 1994, 78, 247. <https://doi.org/10.1016/0010-4655(94)90003-5>
103. Kobus J., Laaksonen L., Sundholm D.: Comput. Phys. Commun. 1996, 98, 346. <https://doi.org/10.1016/0010-4655(96)00098-7>
104. Kobus J.: Adv. Quantum Chem. 1997, 28, 1. <https://doi.org/10.1016/S0065-3276(08)60203-8>
105. Moncrieff D., Kobus J., Wilson S.: Mol. Phys. 1998, 93, 713. <https://doi.org/10.1080/00268979809482257>
106. Hoeft J., Lovas E. J., Tiemann E., Torring T.: Z. Naturforsch. A 1970, 25, 1029.
107. Boeckh R. V., Graff G., Ley R.: Z. Phys. 1964, 179, 285. <https://doi.org/10.1007/BF01381648>
108. Chałasiński G., Szczęśniak M. M.: Chem. Rev. 1994, 94, 1723. <https://doi.org/10.1021/cr00031a001>
109. Boys S. F., Bernardi F.: Mol. Phys. 1970, 19, 553. <https://doi.org/10.1080/00268977000101561>
110. van Lenthe J. H., van Duijneveldt-van de Rijdt J. G. C. M., van Duijneveldt F. B.: Adv. Chem. Phys. 1987, 69, 521. <https://doi.org/10.1002/9780470142943.ch9>
111. Karlström G., Sadlej A. J.: Theor. Chim. Acta 1982, 61, 1. <https://doi.org/10.1007/BF00573859>