Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2003, 68, 1105-1118
https://doi.org/10.1135/cccc20031105

Transition States of Cisplatin Binding to Guanine and Adenine: ab initio Reactivity Study

Zdenek Chvala and Miroslav Šípb,*

a Department of Chemistry, Faculty of Biological Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
b Department of Health Physics and Biophysics, Faculty of Health and Social Studies, University of South Bohemia, Jírovcova 24, 370 04 České Budějovice, Czech Republic

Crossref Cited-by Linking

  • Akbari Elahe, Namazian Mansoor, Noorbala Mohammad R.: Interaction of Sulforaphane with Cis-Platin: A Theoretical Study. J. Comput. Biophys. Chem. 2021, 20, 581. <https://doi.org/10.1142/S2737416521500320>
  • Šebesta Filip, Burda Jaroslav V.: Study on electronic properties, thermodynamic and kinetic parameters of the selected platinum(II) derivatives interacting with guanine. Journal of Inorganic Biochemistry 2017, 172, 100. <https://doi.org/10.1016/j.jinorgbio.2017.04.006>
  • Zábojníková Tereza, Cajzl Radim, Kljun Jakob, Chval Zdeněk, Turel Iztok, Burda Jaroslav V.: Interactions of the “piano‐stool” [ruthenium(II)(η6‐arene)(quinolone)Cl]+ complexes with water; DFT computational study. J Comput Chem 2016, 37, 1766. <https://doi.org/10.1002/jcc.24373>
  • Futera Zdeněk, Burda Jaroslav V.: Reaction mechanism of Ru(II) piano‐stool complexes: Umbrella sampling QM/MM MD study. J Comput Chem 2014, 35, 1446. <https://doi.org/10.1002/jcc.23639>
  • Banerjee Snehasis, Mukherjee Asok K.: Interactions of the aquated forms of the anticancer drug AMD443 with DNA purine bases: A detailed computational approach. Inorganica Chimica Acta 2013, 400, 130. <https://doi.org/10.1016/j.ica.2013.01.033>
  • Chval Zdeněk, Kabeláč Martin, Burda Jaroslav V.: Mechanism of the cis-[Pt(1R,2R-DACH)(H2O)2]2+ Intrastrand Binding to the Double-Stranded (pGpG)·(CpC) Dinucleotide in Aqueous Solution: A Computational DFT Study. Inorg. Chem. 2013, 52, 5801. <https://doi.org/10.1021/ic302654s>
  • Pinter Balazs, Van Speybroeck Veronique, Waroquier Michel, Geerlings Paul, De Proft Frank: trans effect and trans influence: importance of metal mediated ligand–ligand repulsion. Phys. Chem. Chem. Phys. 2013, 15, 17354. <https://doi.org/10.1039/c3cp52383g>
  • Futera Zdeněk, Platts James A., Burda Jaroslav V.: Binding of piano‐stool Ru(II) complexes to DNA; QM/MM study. J Comput Chem 2012, 33, 2092. <https://doi.org/10.1002/jcc.23045>
  • Zhou Lixin: Computational study on the mechanisms of action of the potential anticancer drug trans-isopropylaminedimethylaminedichloroplatinum (trans-IPADMADP) and its cis isomer with DNA purine bases. Inorg Chim Ada 2011, 376, 44. <https://doi.org/10.1016/j.ica.2011.05.034>
  • Zayed Aref, Jones George D. D., Reid Helen J., Shoeib Tamer, Taylor Sarah E., Thomas Anne L., Wood Joanna P., Sharp Barry L.: Speciation of oxaliplatin adducts with DNA nucleotides. Metallomics 2011, 3, 991. <https://doi.org/10.1039/c1mt00041a>
  • Chval Zdeněk, Futera Zdeněk, Burda Jaroslav V.: Comparison of hydration reactions for “piano-stool” RAPTA-B and [Ru(η6− arene)(en)Cl]+ complexes: Density functional theory computational study. The Journal of Chemical Physics 2011, 134. <https://doi.org/10.1063/1.3515534>
  • Zimmermann Tomáš, Burda Jaroslav V.: Cisplatin interaction with amino acids cysteine and methionine from gas phase to solutions with constant pH. Interdiscip Sci Comput Life Sci 2010, 2, 98. <https://doi.org/10.1007/s12539-010-0094-x>
  • Sarmah Pubalee, Deka Ramesh C.: Hydrolysis and binding mechanism of AMD473 (cis-[PtCl2(NH3)(2-picoline)]) with guanine: A quantum mechanical study. Journal of Molecular Structure: THEOCHEM 2010, 955, 53. <https://doi.org/10.1016/j.theochem.2010.05.030>
  • Zhang Dongdong, Ren Xiuli, Zhou Lixin: Theoretical analysis of trans-[PtCl2(NH3)(thiazole)] and trans-[PtCl2(thiazole)2] binding to biological targets — Factors influence binding kinetics and adduct stability. Can. J. Chem. 2010, 88, 1240. <https://doi.org/10.1139/V10-139>
  • Gao Yan, Zhou Lixin: DNA bindings of a novel anticancer drug, trans-[PtCl2(isopropylamine)(3-picoline)], and kinetic competition of purine bases with protein residues in the bifunctional substitutions: a theoretical DFT study. Theor Chem Acc 2009, 123, 455. <https://doi.org/10.1007/s00214-009-0557-5>
  • Kozelka Jiří: Molecular origin of the sequence-dependent kinetics of reactions between cisplatin derivatives and DNA. Inorg Chim Ada 2009, 362, 651. <https://doi.org/10.1016/j.ica.2008.04.024>
  • Zhou Lixin: Theoretical Analysis on the Transition State of the Anticancer Drug trans-[PtCl2(isopropylamine)2] and Its cis Isomer Binding to DNA Purine Bases. J. Phys. Chem. B 2009, 113, 2110. <https://doi.org/10.1021/jp806661g>
  • Miguel Pablo J. Sanz, Roitzsch Michael, Yin Lu, Lax Patrick M., Holland Lars, Krizanovic Olga, Lutterbeck Matthias, Schürmann Markus, Fusch Edda C., Lippert Bernhard: On the many roles of NH3 ligands in mono- and multinuclear complexes of platinum. Dalton Trans. 2009, 10774. <https://doi.org/10.1039/b916537a>
  • Chval Zdenek, Sip Miroslav, Burda Jaroslav V.: The trans effect in square‐planar platinum(II) complexes—A density functional study. J Comput Chem 2008, 29, 2370. <https://doi.org/10.1002/jcc.20980>
  • Bradáč Ondřej, Zimmermann Tomáš, Burda Jaroslav V.: Comparison of the electronic properties, and thermodynamic and kinetic parameters of the aquation of selected platinum(II) derivatives with their anticancer IC50 indexes. J Mol Model 2008, 14, 705. <https://doi.org/10.1007/s00894-008-0285-0>
  • Dans Pablo D., Crespo Alejandro, Estrin Darío A., Coitiño E. Laura: Structural and Energetic Study of Cisplatin and Derivatives: Comparison of the Performance of Density Funtional Theory Implementations. J. Chem. Theory Comput. 2008, 4, 740. <https://doi.org/10.1021/ct7002385>
  • Chen Jin-Can, Chen Lan-Mei, Xu Lian-Cai, Zheng Kang-Cheng, Ji Liang-Nian: Binding to DNA Purine Base and Structure−Activity Relationship of a Series of Structurally Related Ru(II) Antitumor Complexes: A Theoretical Study. J. Phys. Chem. B 2008, 112, 9966. <https://doi.org/10.1021/jp711799g>
  • Pavelka Matěj, Burda Jaroslav V.: Pt-bridges in various single-strand and double-helix DNA sequences. DFT and MP2 study of the cisplatin coordination with guanine, adenine, and cytosine. J Mol Model 2007, 13, 367. <https://doi.org/10.1007/s00894-006-0151-x>
  • Costa Luiz Antônio S., Hambley Trevor W., Rocha Willian R., De Almeida Wagner B., Dos Santos Hélio F.: Kinetics and structural aspects of the cisplatin interactions with guanine: A quantum mechanical description. Int J of Quantum Chemistry 2006, 106, 2129. <https://doi.org/10.1002/qua.20979>
  • Lau Justin Kai-Chi, Deubel Dirk V.: Hydrolysis of the Anticancer Drug Cisplatin:  Pitfalls in the Interpretation of Quantum Chemical Calculations. J. Chem. Theory Comput. 2006, 2, 103. <https://doi.org/10.1021/ct050229a>
  • Costa Luiz Antônio S., Rocha Willian R., De Almeida Wagner B., Dos Santos Hélio F.: Linear free energy relationship for 4-substituted (o-phenylenediamine)platinum(II) dichloride derivatives using quantum mechanical descriptors. J  Inorg Biochem 2005, 99, 575. <https://doi.org/10.1016/j.jinorgbio.2004.11.017>
  • Zimmermann Tomáš, Zeizinger Michal, Burda Jaroslav V.: Cisplatin interaction with cysteine and methionine, a theoretical DFT study. J  Inorg Biochem 2005, 99, 2184. <https://doi.org/10.1016/j.jinorgbio.2005.07.021>
  • Šponer Judit E., Sychrovský Vladimír, Hobza Pavel, Šponer Jiří: Interactions of hydrated divalent metal cations with nucleic acid bases. How to relate the gas phase data to solution situation and binding selectivity in nucleic acids. Phys. Chem. Chem. Phys. 2004, 6, 2772. <https://doi.org/10.1039/B404306P>
  • Baik Mu-Hyun, Friesner Richard A., Lippard Stephen J.: cis-{Pt(NH3)2(L)}2+/+ (L = Cl, H2O, NH3) Binding to Purines and CO:  Does π-Back-Donation Play a Role?. Inorg. Chem. 2003, 42, 8615. <https://doi.org/10.1021/ic035022b>
  • Baik Mu-Hyun, Friesner Richard A., Lippard Stephen J.: Theoretical Study of Cisplatin Binding to Purine Bases:  Why Does Cisplatin Prefer Guanine over Adenine?. J. Am. Chem. Soc. 2003, 125, 14082. <https://doi.org/10.1021/ja036960d>