Collect. Czech. Chem. Commun.
2005, 70, 1577-1588
https://doi.org/10.1135/cccc20051577
Estimation of Resonance Energy from Forced Nonplanar Conformations of Conjugated Molecules
Stanislav Böhma and Otto Exnerb,*
a Department of Organic Chemistry, Institute of Chemical Technology, Prague, 166 28 Prague 6, Czech Republic
b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
References
1a. Prog. Phys. Org. Chem. 1973, 10, 1.
< S., Brownlee R. T. C., Taft R. W.: https://doi.org/10.1002/9780470171899.ch1>
1b. Chem. Rev. (Washington, D.C.) 1991, 91, 165.
< C., Leo A., Taft R. W.: https://doi.org/10.1021/cr00002a004>
2. Prog. Phys. Org. Chem. 1981, 13, 119.
< M.: https://doi.org/10.1002/9780470171929.ch3>
3. Exner O.: Correlation Analysis of Chemical Data, Chap. 5.2. Plenum Press, New York 1988.
4. Prog. Phys. Org. Chem. 1976, 12, 1.
< R. D.: https://doi.org/10.1002/9780470171912.ch1>
5a. J. Am. Chem. Soc. 1972, 94, 1496.
< W. J., Radom L., Pople R. A.: https://doi.org/10.1021/ja00760a011>
5b. J. Am. Chem. Soc. 1985, 107, 3488.
< A., Stevenson T. A.: https://doi.org/10.1021/ja00298a015>
5c. J. Mol. Struct. (THEOCHEM) 2000, 528, 255.
< M. R.: https://doi.org/10.1016/S0166-1280(99)00500-X>
6. J. Chem. Soc., Perkin Trans. 2 2000, 1994.
< O., Böhm S.: https://doi.org/10.1039/b003073m>
7. Collect. Czech. Chem. Commun. 2001, 66, 1623.
< O., Böhm S.: https://doi.org/10.1135/cccc20011623>
8a. J. Org. Chem. 1980, 45, 818.
< A., Radom L., Taft R. W.: https://doi.org/10.1021/jo01293a012>
8b. Org. Reactiv. (Tartu) 1995, 29, 1.
O.:
9. J. Chem. Inf. Comput. Sci. 2004, 44, 652.
< L., Fu Y., Liu R., Li R.-Q., Guo Q.-X.: https://doi.org/10.1021/ci0342122>
10. J. Mol. Struct. (THEOCHEM) 2005, 722, 125.
< S., Exner O.: https://doi.org/10.1016/j.theochem.2004.11.053>
11a. J. Comput. Chem. 2004, 25, 1979.
< O., Böhm S.: https://doi.org/10.1002/jcc.20124>
11b. Collect. Czech. Chem. Commun. 2005, 70, 370.
< S., Exner O.: https://doi.org/10.1135/cccc20050370>
12. Exner O., Böhm S.: J. Phys. Org. Chem., in press.
13. J. Chem. Soc., Perkin Trans. 2 1976, 1222.
< P., Trachtman M., Bock C. W., Brett A. M.: https://doi.org/10.1039/p29760001222>
14. J. Chem. Soc. 1935, 1841.
J. W., Nathan W. S.:
15. Nature 1954, 173, 117.
< E. A., Sondheimer F., Forbes W. F.: https://doi.org/10.1038/173117a0>
16. J. Phys. Org. Chem. 2004, 17, 686.
< J., Böhm S., Palát K., Jr., Exner O.: https://doi.org/10.1002/poc.750>
17a. J. Chem. Soc., Perkin Trans. 2 1995, 1021.
< S., Dell’Erba C., Gruttadauria M., Noto R., Novi M., Petrillo G., Sancassan F., Spinelli D.: https://doi.org/10.1039/p29950001021>
17b. J. Chem. Soc., Perkin Trans. 2 1990, 2055.
< C., Mele A., Novi M., Petrillo G., Sancassan F., Spinelli D.: https://doi.org/10.1039/p29900002055>
18a. J. Org. Chem. 2002, 67, 4787.
< K. B.: https://doi.org/10.1021/jo020100i>
18b. J. Org. Chem. 2003, 68, 9322.
< K. B.: https://doi.org/10.1021/jo030227n>
18c. J. Am. Chem. Soc. 1997, 119, 9478.
< D., Hiberty P. C.: https://doi.org/10.1021/ja9639426>
19a. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098.
< A. D.: https://doi.org/10.1103/PhysRevA.38.3098>
19b. Phys. Rev. B.: Condens. Matter 1988, 37, 785.
< C., Yang W., Parr R. G.: https://doi.org/10.1103/PhysRevB.37.785>
19c. Chem. Phys. Lett. 1989, 157, 200.
< B., Savin A., Stoll H., Preuss H.: https://doi.org/10.1016/0009-2614(89)87234-3>
19d. J. Chem. Phys. 1993, 98, 5648.
< A. D.: https://doi.org/10.1063/1.464913>
20. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03, Revision B.03. Gaussian, Inc., Pittsburgh (PA) 2003.
21. Chem. Phys. Lett. 1972, 13, 249.
< U., Cadioli B., Levy B.: https://doi.org/10.1016/0009-2614(72)85053-X>
22. J. Phys. Chem. A 1997, 101, 7426.
< A., Choi C. H., Kertesz M.: https://doi.org/10.1021/jp971606l>
23. Org. Biomol. Chem. 2003, 1, 5147.
< S., Exner O.: https://doi.org/10.1039/b212298g>
24. Chem. Rev. (Washington, D.C.) 1953, 53, 191.
< H. H.: https://doi.org/10.1021/cr60165a003>
25. J. Phys. Org. Chem. 2004, 17, 124.
< O., Böhm S.: https://doi.org/10.1002/poc.701>