Collect. Czech. Chem. Commun. 2005, 70, 1577-1588
https://doi.org/10.1135/cccc20051577

Estimation of Resonance Energy from Forced Nonplanar Conformations of Conjugated Molecules

Stanislav Böhma and Otto Exnerb,*

a Department of Organic Chemistry, Institute of Chemical Technology, Prague, 166 28 Prague 6, Czech Republic
b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic

References

1a. Ehrenson S., Brownlee R. T. C., Taft R. W.: Prog. Phys. Org. Chem. 1973, 10, 1. <https://doi.org/10.1002/9780470171899.ch1>
1b. Hansch C., Leo A., Taft R. W.: Chem. Rev. (Washington, D.C.) 1991, 91, 165. <https://doi.org/10.1021/cr00002a004>
2. Charton M.: Prog. Phys. Org. Chem. 1981, 13, 119. <https://doi.org/10.1002/9780470171929.ch3>
3. Exner O.: Correlation Analysis of Chemical Data, Chap. 5.2. Plenum Press, New York 1988.
4. Topsom R. D.: Prog. Phys. Org. Chem. 1976, 12, 1. <https://doi.org/10.1002/9780470171912.ch1>
5a. Hehre W. J., Radom L., Pople R. A.: J. Am. Chem. Soc. 1972, 94, 1496. <https://doi.org/10.1021/ja00760a011>
5b. Greenberg A., Stevenson T. A.: J. Am. Chem. Soc. 1985, 107, 3488. <https://doi.org/10.1021/ja00298a015>
5c. Helal M. R.: J. Mol. Struct. (THEOCHEM) 2000, 528, 255. <https://doi.org/10.1016/S0166-1280(99)00500-X>
6. Exner O., Böhm S.: J. Chem. Soc., Perkin Trans. 2 2000, 1994. <https://doi.org/10.1039/b003073m>
7. Exner O., Böhm S.: Collect. Czech. Chem. Commun. 2001, 66, 1623. <https://doi.org/10.1135/cccc20011623>
8a. Pross A., Radom L., Taft R. W.: J. Org. Chem. 1980, 45, 818. <https://doi.org/10.1021/jo01293a012>
8b. Exner O.: Org. Reactiv. (Tartu) 1995, 29, 1.
9. Liu L., Fu Y., Liu R., Li R.-Q., Guo Q.-X.: J. Chem. Inf. Comput. Sci. 2004, 44, 652. <https://doi.org/10.1021/ci0342122>
10. Böhm S., Exner O.: J. Mol. Struct. (THEOCHEM) 2005, 722, 125. <https://doi.org/10.1016/j.theochem.2004.11.053>
11a. Exner O., Böhm S.: J. Comput. Chem. 2004, 25, 1979. <https://doi.org/10.1002/jcc.20124>
11b. Böhm S., Exner O.: Collect. Czech. Chem. Commun. 2005, 70, 370. <https://doi.org/10.1135/cccc20050370>
12. Exner O., Böhm S.: J. Phys. Org. Chem., in press.
13. George P., Trachtman M., Bock C. W., Brett A. M.: J. Chem. Soc., Perkin Trans. 2 1976, 1222. <https://doi.org/10.1039/p29760001222>
14. Baker J. W., Nathan W. S.: J. Chem. Soc. 1935, 1841.
15. Braude E. A., Sondheimer F., Forbes W. F.: Nature 1954, 173, 117. <https://doi.org/10.1038/173117a0>
16. Kulhánek J., Böhm S., Palát K., Jr., Exner O.: J. Phys. Org. Chem. 2004, 17, 686. <https://doi.org/10.1002/poc.750>
17a. Chimichi S., Dell’Erba C., Gruttadauria M., Noto R., Novi M., Petrillo G., Sancassan F., Spinelli D.: J. Chem. Soc., Perkin Trans. 2 1995, 1021. <https://doi.org/10.1039/p29950001021>
17b. Dell’Erba C., Mele A., Novi M., Petrillo G., Sancassan F., Spinelli D.: J. Chem. Soc., Perkin Trans. 2 1990, 2055. <https://doi.org/10.1039/p29900002055>
18a. Wiberg K. B.: J. Org. Chem. 2002, 67, 4787. <https://doi.org/10.1021/jo020100i>
18b. Wiberg K. B.: J. Org. Chem. 2003, 68, 9322. <https://doi.org/10.1021/jo030227n>
18c. Lauvergnat D., Hiberty P. C.: J. Am. Chem. Soc. 1997, 119, 9478. <https://doi.org/10.1021/ja9639426>
19a. Becke A. D.: Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098. <https://doi.org/10.1103/PhysRevA.38.3098>
19b. Lee C., Yang W., Parr R. G.: Phys. Rev. B.: Condens. Matter 1988, 37, 785. <https://doi.org/10.1103/PhysRevB.37.785>
19c. Miehlich B., Savin A., Stoll H., Preuss H.: Chem. Phys. Lett. 1989, 157, 200. <https://doi.org/10.1016/0009-2614(89)87234-3>
19d. Becke A. D.: J. Chem. Phys. 1993, 98, 5648. <https://doi.org/10.1063/1.464913>
20. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03, Revision B.03. Gaussian, Inc., Pittsburgh (PA) 2003.
21. Pincelli U., Cadioli B., Levy B.: Chem. Phys. Lett. 1972, 13, 249. <https://doi.org/10.1016/0009-2614(72)85053-X>
22. Karpfen A., Choi C. H., Kertesz M.: J. Phys. Chem. A 1997, 101, 7426. <https://doi.org/10.1021/jp971606l>
23. Böhm S., Exner O.: Org. Biomol. Chem. 2003, 1, 5147. <https://doi.org/10.1039/b212298g>
24. Jaffé H. H.: Chem. Rev. (Washington, D.C.) 1953, 53, 191. <https://doi.org/10.1021/cr60165a003>
25. Exner O., Böhm S.: J. Phys. Org. Chem. 2004, 17, 124. <https://doi.org/10.1002/poc.701>