Collect. Czech. Chem. Commun. 2005, 70, 430-440
https://doi.org/10.1135/cccc20050430

Macropolyhedral Boron-Containing Cluster Chemistry. A Metallathiaborane from S2B17H17: Isolation and Characterisation of [(PMe2Ph)2PtS2B16H16]; A neo-arachno Ten-Vertex Cluster Shape, and the Constitution of the [arachno-B10H15]- Anion

Michael J. Carra,b, Michael G. S. Londesborougha, Jonathan Bouldb, Ivana Císařovác, Bohumil Štíbra and John D. Kennedyb,*

a Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 250 68 Řež near Prague, Czech Republic
b The School of Chemistry of the University of Leeds, Leeds, UK LS2 9JT, England
c Faculty of Science, Charles University, Hlavova 2030, 128 42 Prague 2, Czech Republic

References

1. Jelínek T., Kennedy J. D., Štíbr B.: J. Chem. Soc., Chem. Commun. 1994, 1415. <https://doi.org/10.1039/c39940001415>
2. Kaur P., Holub J., Rath N. P., Bould J., Barton L., Štíbr B., Kennedy J. D.: J. Chem. Soc., Chem. Commun. 1996, 273. <https://doi.org/10.1039/cc9960000273>
3. Kaur P., Thornton-Pett M., Clegg W., Kennedy J. D.: J. Chem. Soc., Dalton Trans. 1996, 4155. <https://doi.org/10.1039/dt9960004155>
4. Jelínek T., Štíbr B., Kennedy J. D., Thornton-Pett M. in: Advances in Boron Chemistry (W. Siebert, Ed.), p. 426. Royal Society of Chemistry, Cambridge 1997.
5. Jelínek T., Císařová I., Štíbr B., Kennedy J. D., Thornton-Pett M.: J. Chem. Soc., Dalton Trans. 1998, 2965. <https://doi.org/10.1039/a805791e>
6. Dosangh P. K., Bould J., Londesborough M. G. S., Jelínek T., Thornton-Pett M., Štíbr B., Kennedy J. D.: J. Organomet. Chem. 2003, 680, 312. <https://doi.org/10.1016/S0022-328X(03)00467-4>
7. Jelínek T., Kennedy J. D., Štíbr B., Thornton-Pett M.: Angew. Chem., Int. Ed. Engl. 1994, 33, 1599. <https://doi.org/10.1002/anie.199415991>
8. Jelínek T., Kennedy J. D., Štíbr B., Thornton-Pett M.: Inorg. Chem. Commun. 1998, 1, 179. <https://doi.org/10.1016/S1387-7003(98)00049-5>
9. Jelínek T., Kilner C., Thornton-Pett M., Kennedy J. D.: J. Chem. Soc., Chem. Commun. 1999, 1905. <https://doi.org/10.1039/a905473a>
10. Kaur P., Kennedy J. D., Thornton-Pett M., Jelínek T., Štíbr B.: J. Chem. Soc., Dalton Trans. 1996, 1775. <https://doi.org/10.1039/dt9960001775>
11. Shea S. L., McGrath T. D., Jelínek T., Štíbr B., Thornton-Pett M., Kennedy J. D.: Inorg. Chem. Commun. 1998, 1, 97. <https://doi.org/10.1016/S1387-7003(98)00025-2>
12. Kaur P., Brownless A., Perera S. D., Cooke P. A., Jelínek T., Kennedy J. D., Thornton-Pett M., Štíbr B.: J. Organomet. Chem. 1998, 557, 181. <https://doi.org/10.1016/S0022-328X(97)00666-9>
13. X-ray diffraction analysis: Crystallographic data for the previously unreported species [(PMe2Ph)2PtS2B16H16] (2) are as follows: C16H38B16P2PtS2: M = 724.57, triclinic (yellow prisms from CH2Cl2/hexane), space group P1, a = 10.3890(1) Å, b = 10.6560(1) Å, c = 14.3730(2) Å, α = 108.7010(7)°, β = 100.9300(7)°, γ = 94.8330(8)°, U = 1461.71(3) Å3, Dcalc = 1.646 Mg m–3, Z = 2, λ = 0.71073 Å (MoKα), μ = 5.062 mm–1, T = 150(2) K, R1 = 0.018 for 6478 reflections with I >> 2σ(I), and wR2 = 0.0439 for all 6729 unique reflections; CCDC 254726. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44-1223/336-033; e-mail: [email protected]).
14. NMR spectroscopy: NMR data for [(PMe2Ph)2PtS2B16H16] (2), CD2Cl2, 298 K, δ in ppm, δ(11B) rel. Ξ 32.083972 MHz (nominally BF3(OEt2) in CDCl3), δ(31P) rel. Ξ 40.480730 MHz (nominally 85% aqueous H3PO4) and δ(1H) rel. Ξ 100 MHz (nominally internal SiMe4). 11B spectrum: sixteen resonance positions have been identified with chemical shifts δ(11B) as follows (with δ(1H) of directly attached exo hydrogen atom in square brackets): +11.2 [+3.85], +10.0 [+4.57], +6.3 [no H(exo)], +5.6 [+2.97], –0.5 [+2.79], –3.6 [no H(exo)], –4.9 [+3.20], –7.5 [+2.76], –11.1 [+3.68], –11.6 [+2.16], –15.4 [+2.34], –22.0 [+0.07], –27.9 [+0.91], 2 × –29.2 [2 × +1.08] (resonances in both 11B and 1H spectra accidentally coincident), and –36.4 [+0.87] ppm. The 1H spectrum also shows δ(1H)(PMe2): +2.00 (3 H, d, 2J(31P-1H) = 11 Hz), +1.90 (3 H, d, 2J(31P-1H) = 11 Hz), +1.79 (3 H, d, 2J(31P-1H) = 10 Hz), +1.67 (3 H, d, 2J(31P-1H) = 10 Hz), with all exhibiting partially resolved 195Pt satellite lines, 3J(195Pt-1H) ≈ 25–30 Hz; additionally δ(1H)(PPh) +7.15 to +7.55 (10 H, complex multiplets). 31P spectrum shows: δ(31P) –9.1 (P(12), broader, 1J(195Pt-31P) ≈ 3100 Hz) and –9.6 (P(11), sharper, 1J(195Pt-31P) = 3818 Hz, 2J(31P-31P) = 29 Hz): a similarly marked differential in magnitudes of coupling constants is general for Pt–P linkages trans to S (larger value) versus Pt–P linkages trans to cage boron atoms (smaller value) in platinathiaboranes12,37,38.
15. Fontaine X. L. R., Greenwood N. N., Kennedy J. D., MacKinnon P. I., Thornton-Pett M.: J. Chem. Soc., Chem. Commun. 1986, 1111. <https://doi.org/10.1039/c39860001111>
16. Shea S. L., MacKinnon P. I., Thornton-Pett M., Kennedy J. D.: Inorg. Chim. Acta 2005, 358, 1709. <https://doi.org/10.1016/j.ica.2004.07.063>
17. Kennedy J. D.: Prog. Inorg. Chem. 1986, 34, 211. <https://doi.org/10.1002/9780470166352.ch4>
18. Plešek J., Heřmánek S., Hanousek F.: Collect. Czech. Chem. Commun. 1967, 32, 699. <https://doi.org/10.1135/cccc19671095>
19. Friedman M. D., Cook R. E., Glick M. D.: Inorg. Chem. 1970, 9, 1452. <https://doi.org/10.1021/ic50088a032>
20. Hertler W. R., Klanberg F., Muetterties E. L.: Inorg. Chem. 1967, 6, 1696. <https://doi.org/10.1021/ic50055a019>
21. Thompson D. A., Pretzer W. R., Rudolph R. W.: Inorg. Chem. 1976, 15, 2948. <https://doi.org/10.1021/ic50165a086>
22. Pretzer W. R., Rudolph R. W.: J. Am. Chem. Soc. 1976, 98, 1441. <https://doi.org/10.1021/ja00422a026>
23. Kang S. O., Sneddon L. G.: Inorg. Chem. 1988, 27, 3298. <https://doi.org/10.1021/ic00292a010>
24. Shedlow A. M., Sneddon L. G.: Inorg. Chem. 1988, 37, 5269. <https://doi.org/10.1021/ic980445c>
25. Bown M., Fontaine X. L. R., Greenwood N. N., Kennedy J. D., MacKinnon P.: J. Chem. Soc., Chem. Commun. 1987, 817. <https://doi.org/10.1039/c39870000817>
26. Bould J., Bown M., Kennedy J. D.: Collect. Czech. Chem. Commun. 2005, 70, 410. <https://doi.org/10.1135/cccc20050410>
27. Kennedy J. D. in: The Borane-Carborane-Carbocation Continuum (Casanova J., Ed.), p. 85. Wiley, New York 1998.
28. Bould J., Cooke P. A., Dörfler U., Kennedy J. D., Barton L., Rath N. P., Thornton-Pett M.: Inorg. Chim. Acta 1999, 285, 290. <https://doi.org/10.1016/S0020-1693(98)00353-3>
29. Baše K., Gregor V., Heřmánek S.: Chem. Ind. (London) 1979, 743.
30. Hilty T. K., Thompson D. A., Butler W. M., Rudolph R. W.: Inorg. Chem. 1979, 18, 2642. <https://doi.org/10.1021/ic50200a002>
31. Faridoon, Ni Dhubhghaill O., Spalding T. R., Ferguson G., Kaitner B., Fontaine X. L. R., Kennedy J. D.: J. Chem. Soc., Dalton Trans. 1989, 1657. <https://doi.org/10.1039/dt9890001657>
32. Kim Y.-H., Brownless A., Cooke P. A., Greatrex R., Kennedy J. D., Thornton-Pett M.: Inorg. Chem. Commun. 1998, 1, 19. <https://doi.org/10.1016/S1387-7003(98)00005-7>
33. Calculational work: For the density-functional theory (DFT) calculations, the structure of the [B10H15] monoanion 5 was initially optimised with the STO-3G* basis set, without symmetry constraints, using standard ab initio methods, and starting from an approximate geometry as represented in schematic XII. The final optimisations, including a frequency analysis to confirm a true minimum, followed by GIAO NMR nuclear shielding predictions, were performed using B3LYP methodology as incorporated in the Gaussian 98 package39, and using the 6-31G* basis set. The minimum is represented in Fig. 2 as a molecular structure, and is represented schematically in structure XIII.
34. Bould J., Greatrex R., Kennedy J. D., Ormsby D. L., Londesborough M. G. S., Callaghan K. L. F., Thornton-Pett M., Spalding T. R., Teat S. J., Clegg W., Fang H., Rath N. P., Barton L.: J. Am. Chem. Soc. 2002, 124, 7431.
35. Dupont J. A., Hawthorne M. F.: Chem. Ind. (London) 1962, 405.
36. Rietz R. R., Siedle A. R., Schaeffer R. O., Todd L. J.: Inorg. Chem. 1973, 12, 2100. <https://doi.org/10.1021/ic50127a031>
37. Jones J. H., Fontaine X. L. R., Greenwood N. N., Kennedy J. D., Thornton-Pett M., Štíbr B., Langhoff H.: J. Organomet. Chem. 1993, 445, C15. <https://doi.org/10.1016/0022-328X(93)80225-Z>
38. Murphy M. P., Spalding T. R., Cowey C., Kennedy J. D., Thornton-Pett M., Holub J.: J. Organomet. Chem. 1998, 550, 151. <https://doi.org/10.1016/S0022-328X(97)00537-8>
39. Frisch M. J., al., Pople J. A.: Gaussian 98, Revision A.7. Gaussian, Inc., Pittsburgh (PA) 1998.
40. Farrugia L. J.: ORTEP-3; J. Appl. Crystallogr. 1997, 30, 565. <https://doi.org/10.1107/S0021889897003117>