Collect. Czech. Chem. Commun.
2005, 70, 430-440
https://doi.org/10.1135/cccc20050430
Macropolyhedral Boron-Containing Cluster Chemistry. A Metallathiaborane from S2B17H17: Isolation and Characterisation of [(PMe2Ph)2PtS2B16H16]; A neo-arachno Ten-Vertex Cluster Shape, and the Constitution of the [arachno-B10H15]- Anion
Michael J. Carra,b, Michael G. S. Londesborougha, Jonathan Bouldb, Ivana Císařovác, Bohumil Štíbra and John D. Kennedyb,*
a Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 250 68 Řež near Prague, Czech Republic
b The School of Chemistry of the University of Leeds, Leeds, UK LS2 9JT, England
c Faculty of Science, Charles University, Hlavova 2030, 128 42 Prague 2, Czech Republic
References
1. J. Chem. Soc., Chem. Commun. 1994, 1415.
< T., Kennedy J. D., Štíbr B.: https://doi.org/10.1039/c39940001415>
2. J. Chem. Soc., Chem. Commun. 1996, 273.
< P., Holub J., Rath N. P., Bould J., Barton L., Štíbr B., Kennedy J. D.: https://doi.org/10.1039/cc9960000273>
3. J. Chem. Soc., Dalton Trans. 1996, 4155.
< P., Thornton-Pett M., Clegg W., Kennedy J. D.: https://doi.org/10.1039/dt9960004155>
4. Jelínek T., Štíbr B., Kennedy J. D., Thornton-Pett M. in: Advances in Boron Chemistry (W. Siebert, Ed.), p. 426. Royal Society of Chemistry, Cambridge 1997.
5. J. Chem. Soc., Dalton Trans. 1998, 2965.
< T., Císařová I., Štíbr B., Kennedy J. D., Thornton-Pett M.: https://doi.org/10.1039/a805791e>
6. J. Organomet. Chem. 2003, 680, 312.
< P. K., Bould J., Londesborough M. G. S., Jelínek T., Thornton-Pett M., Štíbr B., Kennedy J. D.: https://doi.org/10.1016/S0022-328X(03)00467-4>
7. Angew. Chem., Int. Ed. Engl. 1994, 33, 1599.
< T., Kennedy J. D., Štíbr B., Thornton-Pett M.: https://doi.org/10.1002/anie.199415991>
8. Inorg. Chem. Commun. 1998, 1, 179.
< T., Kennedy J. D., Štíbr B., Thornton-Pett M.: https://doi.org/10.1016/S1387-7003(98)00049-5>
9. J. Chem. Soc., Chem. Commun. 1999, 1905.
< T., Kilner C., Thornton-Pett M., Kennedy J. D.: https://doi.org/10.1039/a905473a>
10. J. Chem. Soc., Dalton Trans. 1996, 1775.
< P., Kennedy J. D., Thornton-Pett M., Jelínek T., Štíbr B.: https://doi.org/10.1039/dt9960001775>
11. Inorg. Chem. Commun. 1998, 1, 97.
< S. L., McGrath T. D., Jelínek T., Štíbr B., Thornton-Pett M., Kennedy J. D.: https://doi.org/10.1016/S1387-7003(98)00025-2>
12. J. Organomet. Chem. 1998, 557, 181.
< P., Brownless A., Perera S. D., Cooke P. A., Jelínek T., Kennedy J. D., Thornton-Pett M., Štíbr B.: https://doi.org/10.1016/S0022-328X(97)00666-9>
13. X-ray diffraction analysis: Crystallographic data for the previously unreported species [(PMe2Ph)2PtS2B16H16] (2) are as follows: C16H38B16P2PtS2: M = 724.57, triclinic (yellow prisms from CH2Cl2/hexane), space group P1, a = 10.3890(1) Å, b = 10.6560(1) Å, c = 14.3730(2) Å, α = 108.7010(7)°, β = 100.9300(7)°, γ = 94.8330(8)°, U = 1461.71(3) Å3, Dcalc = 1.646 Mg m–3, Z = 2, λ = 0.71073 Å (MoKα), μ = 5.062 mm–1, T = 150(2) K, R1 = 0.018 for 6478 reflections with I >> 2σ(I), and wR2 = 0.0439 for all 6729 unique reflections; CCDC 254726. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44-1223/336-033; e-mail: [email protected]).
14. NMR spectroscopy: NMR data for [(PMe2Ph)2PtS2B16H16] (2), CD2Cl2, 298 K, δ in ppm, δ(11B) rel. Ξ 32.083972 MHz (nominally BF3(OEt2) in CDCl3), δ(31P) rel. Ξ 40.480730 MHz (nominally 85% aqueous H3PO4) and δ(1H) rel. Ξ 100 MHz (nominally internal SiMe4). 11B spectrum: sixteen resonance positions have been identified with chemical shifts δ(11B) as follows (with δ(1H) of directly attached exo hydrogen atom in square brackets): +11.2 [+3.85], +10.0 [+4.57], +6.3 [no H(exo)], +5.6 [+2.97], –0.5 [+2.79], –3.6 [no H(exo)], –4.9 [+3.20], –7.5 [+2.76], –11.1 [+3.68], –11.6 [+2.16], –15.4 [+2.34], –22.0 [+0.07], –27.9 [+0.91], 2 × –29.2 [2 × +1.08] (resonances in both 11B and 1H spectra accidentally coincident), and –36.4 [+0.87] ppm. The 1H spectrum also shows δ(1H)(PMe2): +2.00 (3 H, d, 2J(31P-1H) = 11 Hz), +1.90 (3 H, d, 2J(31P-1H) = 11 Hz), +1.79 (3 H, d, 2J(31P-1H) = 10 Hz), +1.67 (3 H, d, 2J(31P-1H) = 10 Hz), with all exhibiting partially resolved 195Pt satellite lines, 3J(195Pt-1H) ≈ 25–30 Hz; additionally δ(1H)(PPh) +7.15 to +7.55 (10 H, complex multiplets). 31P spectrum shows: δ(31P) –9.1 (P(12), broader, 1J(195Pt-31P) ≈ 3100 Hz) and –9.6 (P(11), sharper, 1J(195Pt-31P) = 3818 Hz, 2J(31P-31P) = 29 Hz): a similarly marked differential in magnitudes of coupling constants is general for Pt–P linkages trans to S (larger value) versus Pt–P linkages trans to cage boron atoms (smaller value) in platinathiaboranes12,37,38.
15. J. Chem. Soc., Chem. Commun. 1986, 1111.
< X. L. R., Greenwood N. N., Kennedy J. D., MacKinnon P. I., Thornton-Pett M.: https://doi.org/10.1039/c39860001111>
16. Inorg. Chim. Acta 2005, 358, 1709.
< S. L., MacKinnon P. I., Thornton-Pett M., Kennedy J. D.: https://doi.org/10.1016/j.ica.2004.07.063>
17. Prog. Inorg. Chem. 1986, 34, 211.
< J. D.: https://doi.org/10.1002/9780470166352.ch4>
18. Collect. Czech. Chem. Commun. 1967, 32, 699.
< J., Heřmánek S., Hanousek F.: https://doi.org/10.1135/cccc19671095>
19. Inorg. Chem. 1970, 9, 1452.
< M. D., Cook R. E., Glick M. D.: https://doi.org/10.1021/ic50088a032>
20. Inorg. Chem. 1967, 6, 1696.
< W. R., Klanberg F., Muetterties E. L.: https://doi.org/10.1021/ic50055a019>
21. Inorg. Chem. 1976, 15, 2948.
< D. A., Pretzer W. R., Rudolph R. W.: https://doi.org/10.1021/ic50165a086>
22. J. Am. Chem. Soc. 1976, 98, 1441.
< W. R., Rudolph R. W.: https://doi.org/10.1021/ja00422a026>
23. Inorg. Chem. 1988, 27, 3298.
< S. O., Sneddon L. G.: https://doi.org/10.1021/ic00292a010>
24. Inorg. Chem. 1988, 37, 5269.
< A. M., Sneddon L. G.: https://doi.org/10.1021/ic980445c>
25. J. Chem. Soc., Chem. Commun. 1987, 817.
< M., Fontaine X. L. R., Greenwood N. N., Kennedy J. D., MacKinnon P.: https://doi.org/10.1039/c39870000817>
26. Collect. Czech. Chem. Commun. 2005, 70, 410.
< J., Bown M., Kennedy J. D.: https://doi.org/10.1135/cccc20050410>
27. Kennedy J. D. in: The Borane-Carborane-Carbocation Continuum (Casanova J., Ed.), p. 85. Wiley, New York 1998.
28. Inorg. Chim. Acta 1999, 285, 290.
< J., Cooke P. A., Dörfler U., Kennedy J. D., Barton L., Rath N. P., Thornton-Pett M.: https://doi.org/10.1016/S0020-1693(98)00353-3>
29. Chem. Ind. (London) 1979, 743.
K., Gregor V., Heřmánek S.:
30. Inorg. Chem. 1979, 18, 2642.
< T. K., Thompson D. A., Butler W. M., Rudolph R. W.: https://doi.org/10.1021/ic50200a002>
31. J. Chem. Soc., Dalton Trans. 1989, 1657.
< , Ni Dhubhghaill O., Spalding T. R., Ferguson G., Kaitner B., Fontaine X. L. R., Kennedy J. D.: https://doi.org/10.1039/dt9890001657>
32. Inorg. Chem. Commun. 1998, 1, 19.
< Y.-H., Brownless A., Cooke P. A., Greatrex R., Kennedy J. D., Thornton-Pett M.: https://doi.org/10.1016/S1387-7003(98)00005-7>
33. Calculational work: For the density-functional theory (DFT) calculations, the structure of the [B10H15]– monoanion 5 was initially optimised with the STO-3G* basis set, without symmetry constraints, using standard ab initio methods, and starting from an approximate geometry as represented in schematic XII. The final optimisations, including a frequency analysis to confirm a true minimum, followed by GIAO NMR nuclear shielding predictions, were performed using B3LYP methodology as incorporated in the Gaussian 98 package39, and using the 6-31G* basis set. The minimum is represented in Fig. 2 as a molecular structure, and is represented schematically in structure XIII.
34. J. Am. Chem. Soc. 2002, 124, 7431.
J., Greatrex R., Kennedy J. D., Ormsby D. L., Londesborough M. G. S., Callaghan K. L. F., Thornton-Pett M., Spalding T. R., Teat S. J., Clegg W., Fang H., Rath N. P., Barton L.:
35. Chem. Ind. (London) 1962, 405.
J. A., Hawthorne M. F.:
36. Inorg. Chem. 1973, 12, 2100.
< R. R., Siedle A. R., Schaeffer R. O., Todd L. J.: https://doi.org/10.1021/ic50127a031>
37. J. Organomet. Chem. 1993, 445, C15.
< J. H., Fontaine X. L. R., Greenwood N. N., Kennedy J. D., Thornton-Pett M., Štíbr B., Langhoff H.: https://doi.org/10.1016/0022-328X(93)80225-Z>
38. J. Organomet. Chem. 1998, 550, 151.
< M. P., Spalding T. R., Cowey C., Kennedy J. D., Thornton-Pett M., Holub J.: https://doi.org/10.1016/S0022-328X(97)00537-8>
39. Frisch M. J., al., Pople J. A.: Gaussian 98, Revision A.7. Gaussian, Inc., Pittsburgh (PA) 1998.
40. J. Appl. Crystallogr. 1997, 30, 565.
< L. J.: ORTEP-3; https://doi.org/10.1107/S0021889897003117>