Collect. Czech. Chem. Commun.
2005, 70, 1035-1054
https://doi.org/10.1135/cccc20051035
Numerical Methods for the Evaluation of the Löwdin α-Function
Nemanja Sovic and James D. Talman*
Department of Applied Mathematics and Centre for Chemical Physics, University of Western Ontario, London, Ontario, Canada N6A 5B7
References
1. Froese Fischer C.: The Hartree–Fock Method for Atoms. Wiley-Interscience, New York 1977.
2a. Phys. Rev. Lett. 2000, 84, 855.
< J. D.: https://doi.org/10.1103/PhysRevLett.84.855>
2b. Int. J. Quantum Chem. 2003, 95, 442.
< J. D.: https://doi.org/10.1002/qua.10781>
3. Adv. Phys. 1955, 5, 1.
< P.-O.: https://doi.org/10.1080/00018735600101155>
4a. J. Comput. Phys. 1978, 29, 35.
< J. D.: https://doi.org/10.1016/0021-9991(78)90107-9>
4b. Comput. Phys. Commun. 1983, 30, 93.
< J. D.: https://doi.org/10.1016/0010-4655(83)90126-1>
5. J. Chem Phys. 1962, 36, 1112.
< F. P., Blanchard C. H.: https://doi.org/10.1063/1.1732673>
6. For references, see: Int. J. Quantum. Chem. 2004, 100, 146.
< D., Silverstone H. J.: https://doi.org/10.1002/qua.20123>
7. For a review, see: Grotendorst J.: Ph.D. Thesis. University of Regensburg.
8. For references, see: Int. J. Quantum Chem. 2004, 100, 172.
< H.: https://doi.org/10.1002/qua.20209>
9. Phys. Rev. A: At., Mol., Opt. Phys. 1981, 13, 517.
< R. R.: https://doi.org/10.1103/PhysRevA.13.517>
10. Phys. Rev. A: At., Mol., Opt. Phys. 1977, 16, 1723.
< H. J., Moats R. K.: https://doi.org/10.1103/PhysRevA.16.1731>
11. J. Math. Phys. 1981, 22, 271.
< M. A.: https://doi.org/10.1063/1.524899>
12. J. Chem. Phys. 1984, 80, 2000.
< J. D.: https://doi.org/10.1063/1.446963>