Collect. Czech. Chem. Commun. 2005, 70, 1196-1224
https://doi.org/10.1135/cccc20051196

Dipole Oscillator Strength Distributions and Properties for Methanol, Ethanol and Propan-1-ol and Related Dispersion Energies

Ashok Kumara, B. L. Jhanwarb and William J. Meathc,*

a Department of Physics, Ch. Charan Singh University, Meerut, 250004, India
b Department of Computer Application, Mody Institute of Technology and Science, Lakshmangarth, Distt. Sikar, Rajasthan, 332311, India
c Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada

References

1. Jhanwar B. L., Meath W. J.: Can. J. Chem. 1984, 62, 373. <https://doi.org/10.1139/v84-066>
2. Zeiss G. D., Meath W. J., MacDonald J. C. F., Dawson D. J.: Can. J. Phys. 1977, 55, 2080. <https://doi.org/10.1139/p77-252>
3a. Margenau H.: Phys. Rev. 1931, 37, 1425. <https://doi.org/10.1103/PhysRev.37.1425>
3b. Margenau H.: Phys. Rev. 1939, 56, 1000. <https://doi.org/10.1103/PhysRev.56.1000>
4a. Dalgarno A., Lynn N.: Proc. Phys. Soc., London 1957, 70, 802. <https://doi.org/10.1088/0370-1298/70/11/303>
4b. Dalgarno A., Kingston A. E.: Proc. Phys. Soc., London 1958, 72, 1053. <https://doi.org/10.1088/0370-1328/72/6/314>
4c. Dalgarno A., Kingston A. E.: Proc. Phys. Soc., London 1959, 73, 455. <https://doi.org/10.1088/0370-1328/73/3/312>
4d. Dalgarno A., Kingston A. E.: Proc. Phys. Soc., London 1961, 78, 607. <https://doi.org/10.1088/0370-1328/78/4/316>
5. Leonard P. J., Barker J. A.: Theor. Chem.: Adv. Perspect. 1975, 1, 117. <https://doi.org/10.1016/B978-0-12-681901-4.50009-X>
6. Kumar A., Fairly G. R. G., Meath W. J.: J. Chem. Phys. 1985, 83, 70; and references therein. <https://doi.org/10.1063/1.449794>
7. Pazur R. J., Kumar A., Thuraisingham R. A., Meath W. J.: Can. J. Chem. 1988, 66, 615. <https://doi.org/10.1139/v88-105>
8. Burton G. R., Chan W. F., Cooper G., Brion C. E.: Chem. Phys. 1992, 167, 349. <https://doi.org/10.1016/0301-0104(92)80208-D>
9. Feng R., Brion C. E.: Chem. Phys. 2002, 282, 419. <https://doi.org/10.1016/S0301-0104(02)00722-X>
10. Margoliash D. J., Meath W. J.: J. Chem. Phys. 1978, 68, 1426. <https://doi.org/10.1063/1.435963>
11. Margoliash D. J., Proctor T. R., Meath W. J.: Mol. Phys. 1978, 35, 747. <https://doi.org/10.1080/00268977800100561>
12. Jhanwar B. L., Meath W. J.: Mol. Phys. 1980, 41, 1061. <https://doi.org/10.1080/00268978000103781>
13a. Fano U., Cooper J. W.: Rev. Mod. Phys. 1968, 40, 441. <https://doi.org/10.1103/RevModPhys.40.441>
13b. Fano U., Cooper J. W.: Rev. Mod. Phys. 1969, 41, 724. <https://doi.org/10.1103/RevModPhys.41.724>
14. Hirschfelder J. O., Byers Brown W., Epstein S. T.: Adv. Quantum Chem. 1964, 1, 255. <https://doi.org/10.1016/S0065-3276(08)60381-0>
15. Zeiss G. D., Meath W. J.: Mol. Phys. 1976, 33, 1155. <https://doi.org/10.1080/00268977700100991>
16. Hirschfelder J. O., Curtis C. F., Bird R. B.: Molecular Theory of Gases and Liquids. Wiley, New York 1954.
17. Eisenschitz R., London F.: Z. Phys. 1930, 60, 491. <https://doi.org/10.1007/BF01341258>
18. Axilrod P. M., Teller E.: J. Chem. Phys. 1943, 11, 299. <https://doi.org/10.1063/1.1723844>
19. Muto Y.: Proc. Phys. Math. Soc. Jpn. 1943, 17, 629.
20. Inokuti M.: Rev. Mod. Phys. 1971, 43, 297. <https://doi.org/10.1103/RevModPhys.43.297>
21a. Zeiss G. D., Meath W. J., MacDonald J. C. F., Dawson D. J.: Radiat. Res. 1975, 63, 64. <https://doi.org/10.2307/3574308>
21b. Zeiss G. D., Meath W. J., MacDonald J. C. F., Dawson D. J.: Radiat. Res. 1977, 70, 284. <https://doi.org/10.2307/3574587>
22. Kramer H. L.: J. Chem. Phys. 1970, 53, 2783. <https://doi.org/10.1063/1.1674403>
23. Kramer H. L., Herschbach D. R.: J. Chem. Phys. 1970, 53, 2792. <https://doi.org/10.1063/1.1674404>
24. Douketis C., Scoles G., Marchetti S., Zen M., Thakkar A. J.: J. Chem. Phys. 1982, 76, 3057. <https://doi.org/10.1063/1.443345>
25. Tang K. T., Toennies J. P.: J. Chem. Phys. 1984, 80, 3726. <https://doi.org/10.1063/1.447150>
26. Meath W. J., Koulis M.: J. Mol. Struct. 1991, 226, 1; and references therein. <https://doi.org/10.1016/0166-1280(91)80002-P>
27. Dham A. K., Meath W. J.: Mol. Phys. 2001, 99, 991; and references therein. <https://doi.org/10.1080/00268970010034559>
28. Hodges M. P., Wheatley R. J.: J. Chem. Phys. 2001, 114, 8836. <https://doi.org/10.1063/1.1367379>
29. Hodges M. P., Wheatley R. J.: J. Mol. Struct. (THEOCHEM) 2002, 591, 67. <https://doi.org/10.1016/S0166-1280(02)00211-7>
30. Wheatley R. J., Tulegenov A. S., Bichoutskaia E.: Int. Rev. Phys. Chem. 2004, 23, 151. <https://doi.org/10.1080/014423504200207772>
31. Barker J. A.: Mol. Phys. 1986, 57, 755. <https://doi.org/10.1080/00268978600100541>
32. Meath W. J., Aziz R. A.: Mol. Phys. 1984, 52, 225; and references therein. <https://doi.org/10.1080/00268978400101171>
33. Ramaswamy K. L.: Proc. Indian Acad. Sci. A 1936, 4, 675. <https://doi.org/10.1007/BF03045345>
34. Bethe H. A., Salpeter E. E.: Quantum Mechanics of One- and Two-Electron Atoms. Academic Press, New York 1957.
35. Meath W. J., Kumar A.: Int. J. Quantum Chem., Quantum Chem. Symp. 1990, 24, 501. <https://doi.org/10.1002/qua.560382450>
36. Kumar A., Meath W. J.: Theor. Chim. Acta 1992, 82, 131. <https://doi.org/10.1007/BF01113134>
37. Kumar A., Meath W. J.: Chem. Phys. 1994, 189, 467. <https://doi.org/10.1016/0301-0104(94)00309-2>
38. Kumar A., Meath W. J., Bundgen P., Thakkar A. J.: J. Chem. Phys. 1996, 105, 4927. <https://doi.org/10.1063/1.472344>
39. Bundgen P., Thakkar A. J., Kumar A., Meath W. J.: Mol. Phys. 1997, 90, 721. <https://doi.org/10.1080/00268979709482658>
40a. Kumar A., Meath W. J.: Can. J. Phys. 1985, 63, 417. <https://doi.org/10.1139/p85-065>
40b. Kumar A., Meath W. J.: Can. J. Phys. 1985, 63, 1616.
41. Kumar A., Meath W. J.: Mol. Phys. 1992, 75, 311. <https://doi.org/10.1080/00268979200100251>
42. Burton G. R., Chan W. F., Cooper G., Brion C. E., Kumar A., Meath W. J.: Can. J. Chem. 1993, 71, 341. <https://doi.org/10.1139/v93-051>
43. Burton G. R., Chan W. F., Cooper G., Brion C. E., Kumar A., Meath W. J.: Can. J. Chem. 1994, 72, 529. <https://doi.org/10.1139/v94-077>
44. Kumar A., Meath W. J.: Mol. Phys. 1997, 90, 389. <https://doi.org/10.1080/00268979709482619>
45. Kumar A.: J. Mol. Struct. (THEOCHEM) 2002, 591, 91. <https://doi.org/10.1016/S0166-1280(02)00213-0>
46. Kumar M., Kumar A., Meath W. J.: Mol. Phys. 2002, 100, 3271. <https://doi.org/10.1080/00268970210162682>
47. Kumar A., Kumar M., Meath W. J.: Chem. Phys. 2003, 286, 227. <https://doi.org/10.1016/S0301-0104(02)00926-6>
48. Kumar A., Kumar M., Meath W. J.: Mol. Phys. 2003, 101, 1535. <https://doi.org/10.1080/0026897031000092986>
49. Jhanwar B. L., Meath W. J., MacDonald J. C. F.: Can. J. Phys. 1981, 59, 185. <https://doi.org/10.1139/p81-023>
50. Jhanwar B. L., Meath W. J.: Chem. Phys. 1982, 67, 185. <https://doi.org/10.1016/0301-0104(82)85033-7>
51. Olney T. N., Cann N. M., Cooper G., Brion C. E.: Chem. Phys. 1997, 223, 59. <https://doi.org/10.1016/S0301-0104(97)00145-6>
52. Burton G. R., Chan W. F., Cooper G., Brion C. E.: Chem. Phys. 1993, 177, 217. <https://doi.org/10.1016/0301-0104(93)80191-B>
53. Washburn E. W.: International Critical Tables, Vol. 7, p. 2. McGraw-Hill, New York 1930.
54. Zeiss G. D., Meath W. J., MacDonald J. C. F., Dawson D. J.: Mol. Phys. 1980, 39, 1055. <https://doi.org/10.1080/00268978000100901>
55. Meath W. J., Margoliash D. J., Jhanwar B. L., Koide A., Zeiss G. D. in: Intermolecular Forces (B. Pullman, Ed.), p. 101. Reidel, Dordrecht 1981.
56. Jhanwar B. L., Meath W. J., MacDonald J. C. F.: Radiat. Res. 1986, 106, 288. <https://doi.org/10.2307/3576736>
57. Seltzer S. M., Berger M. J.: Int. J. Appl. Radiat. Isot. 1982, 33, 1189. <https://doi.org/10.1016/0020-708X(82)90244-7>
58. Thompson T. J.: Effect of Chemical Structure on Stopping Powers for High-Energy Protons. Report UCRL-1910. University of California, Radiation Laboratory, Berkeley 1952.
59. ICRU – Stopping Powers for Electrons and Positrons. Report 37. International Commission on Radiation Units and Measurements, Bethesda 1984.
60. Bichsel H.: Phys. Med. Biol. 1982, 27, 449. <https://doi.org/10.1088/0031-9155/27/3/014>
61. Both G., Krotz R., Lohmer K., Neuwirth W.: Phys. Rev. A 1983, 28, 3212. <https://doi.org/10.1103/PhysRevA.28.3212>
62. Thwaites D. I.: Nucl. Instrum. Methods Phys. Res., Sect. B 1985, 12, 84. <https://doi.org/10.1016/0168-583X(85)90705-0>
63. Johnson R. E., Epstein S. T., Meath W. J.: J. Chem. Phys. 1967, 47, 1271. <https://doi.org/10.1063/1.1712079>
64. Kumar A., Meath W. J.: Chem. Phys. 1984, 91, 411. <https://doi.org/10.1016/0301-0104(84)80073-7>
65. Kumar A., Meath W. J.: Mol. Phys. 1985, 54, 823. <https://doi.org/10.1080/00268978500103191>
66. Kumar A., Meath W. J.: J. Comput. Methods, Sci. Eng. 2004, 4, 307.
67. Spackman M. A.: J. Chem. Phys. 1991, 94, 1295. <https://doi.org/10.1063/1.460039>
68. Spackman M. A.: J. Chem. Phys. 1991, 94, 1288. <https://doi.org/10.1063/1.460038>
69. Spackman M. A.: J. Phys. Chem. 1989, 93, 7594. <https://doi.org/10.1021/j100359a015>
70. Cybulski S. M., Haley T. P.: J. Chem. Phys. 2004, 121, 7711. <https://doi.org/10.1063/1.1795652>
71. Buck U., Siebers J. G., Wheatley R. J.: J. Chem. Phys. 1998, 108, 20. <https://doi.org/10.1063/1.475361>
72. Quoted (private communication) from the work of B. L. Jhanwar and W. J. Meath (unpublished work) by M. A. Spackman67.
73. Hodges M. P., Wheatley R. J., Harvey A. H.: J. Chem. Phys. 2002, 116, 1397. <https://doi.org/10.1063/1.1421065>
74. McDowell S. A. C., Meath W. J.: Can. J. Chem. 1998, 76, 483. <https://doi.org/10.1139/cjc-76-4-483>
75. Mulder F., Thomas G. F., Meath W. J.: Mol. Phys. 1980, 41, 249. <https://doi.org/10.1080/00268978000102751>
76. Mulder F., van Dijk G., van der Avoird A.: Mol. Phys. 1980, 39, 407. <https://doi.org/10.1080/00268978000100341>
77. Berns R. M., van der Avoird A.: J. Chem. Phys. 1980, 71, 6107. <https://doi.org/10.1063/1.439067>
78. Hettema H., Wormer P. E. S., Thakkar A. J.: Mol. Phys. 1993, 80, 533. <https://doi.org/10.1080/00268979300102451>
79. Twenty pseudo-states for each of the alcohols are available from the authors: [email protected].