Collect. Czech. Chem. Commun. 2006, 71, 842-858
https://doi.org/10.1135/cccc20060842

Conformational Analysis, Solvent-Accessible Surface and Geometric Extent of Inhibitors and Substrates

Matheus Froeyena, Hans De Winterb and Piet Herdewijna,*

a Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
b Silicos NV, Wetenschapspark 7, B-3590 Diepenbeek, Belgium

References

1. Lloyd D. G., Buenemann C. L., Todorov N. P., Manallack D. T., Dean P. M.: J. Med. Chem. 2004, 47, 493. <https://doi.org/10.1021/jm034222u>
2. Jain A. N.: J. Med. Chem. 2004, 47, 947. <https://doi.org/10.1021/jm030520f>
3. Jones G., Willett P., Glen R. C., Leach A. R., Taylor R.: J. Mol. Biol. 1997, 267, 727. <https://doi.org/10.1006/jmbi.1996.0897>
4. Morris G. M., Goodsell D. S., Halliday R. S., Huey R., Hart W. E., Belew R. K., Olson A. J.: J. Comput. Chem. 1998, 19, 1639. <https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B>
5. Kuntz I. D., Meng E. C., Shoichet B. K.: Acc. Chem. Res. 1994, 27, 117. <https://doi.org/10.1021/ar00041a001>
6. Jain A. N.: J. Med. Chem. 2003, 46, 499. <https://doi.org/10.1021/jm020406h>
7. Nicklaus M. C., Wang S., Driscoll J. S., Milne G. W. A.: Bioorg. Med. Chem. 1995, 3, 411. <https://doi.org/10.1016/0968-0896(95)00031-B>
8. Bostrom J., Norrby P. O., Liljefors T.: J. Comput.-Aided Mol. Des. 1998, 12, 383. <https://doi.org/10.1023/A:1008007507641>
9. Perola E., Charifson P. S.: J. Med. Chem. 2004, 47, 2499. <https://doi.org/10.1021/jm030563w>
10. Sobolev V., Wade R. C., Vriend G., Edelman M.: Proteins 1996, 25, 120. <https://doi.org/10.1002/(SICI)1097-0134(199605)25:1<120::AID-PROT10>3.3.CO;2-1>
11. Norel R., Petrey D., Wolfson H. J., Nussinov R.: Proteins 1999, 36, 307. <https://doi.org/10.1002/(SICI)1097-0134(19990815)36:3<307::AID-PROT5>3.0.CO;2-R>
12. Hou T., Wang J., Chen L., Xu X.: Protein Eng. 1999, 12, 639. <https://doi.org/10.1093/protein/12.8.639>
13. Gabb H. A., Jackson R. M., Sternberg M. J.: J. Mol. Biol. 1997, 272, 106. <https://doi.org/10.1006/jmbi.1997.1203>
14. Chen R., Weng Z.: Proteins 2003, 51, 397. <https://doi.org/10.1002/prot.10334>
15. Stanfield R. L., Wilson I. A.: Curr. Opin. Struct. Biol. 1995, 5, 103. <https://doi.org/10.1016/0959-440X(95)80015-S>
16. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E.: Nucleic Acids Res. 2000, 28, 235. <https://doi.org/10.1093/nar/28.1.235>
17. Mohamadi F., Richards N. G. J., Guida W. C., Liskamp R., Lipton M., Caufield C., Chang G., Hendrickson T., Still W. C.: J. Comput. Chem. 1990, 11, 440. <https://doi.org/10.1002/jcc.540110405>
18. Saunders M., Houk K. N., Wu Y., Still W. C., Lipton M., Chang G., Guida W. C.: J. Am. Chem. Soc. 1990, 112, 1419. <https://doi.org/10.1021/ja00160a020>
19. Weiner P., Kollman P. A., Nguyen D. T., Case D. A.: J. Comput. Chem. 1986, 7, 230. <https://doi.org/10.1002/jcc.540070216>
20. Still W. C., Tempczyk A., Hawley R. C., Hendrickson T.: J. Am. Chem. Soc. 1990, 112, 6127. <https://doi.org/10.1021/ja00172a038>
21. Richards F. M.: Annu. Rev. Biophys. Bioeng. 1977, 6, 151. <https://doi.org/10.1146/annurev.bb.06.060177.001055>
22. Ferrin T. E., Huang C. C., Jarvis L. E., Langridge R.: J. Mol. Graphics 1988, 6, 13. <https://doi.org/10.1016/0263-7855(88)80054-7>
23. Wang R., Fu Y., Lai L.: J. Chem. Inf. Comput. Sci. 1997, 37, 615. <https://doi.org/10.1021/ci960169p>
24. Cleveland W. S., Grosse E.: Stat. Comput. 1991, 1, 47. <https://doi.org/10.1007/BF01890836>
25. Broeker H. B., Campbell J., Cunningham R., Denholm D., Elber G., Fearick R., Grammes C., Hart L., Hecking L., Koenig T., Kotz D., Kubaitis E., Lang R., Lehmann A., Mai A., Steger C., Tkacik T., Van der Woude J., Van Zandt J. R., Woo A.: Gnuplot 3.7; http://gnu.org.
26. Huang X., Xu L., Luo X., Fan K., Ji R., Pei G., Chen K., Jiang H.: J. Med. Chem. 2002, 45, 333. <https://doi.org/10.1021/jm0102710>
27. Vig R., Mao C., Venkatachalan T. K., Tuel-Ahlgren L., Sudbeck E. A., Uckun F. M.: Bioorg. Med. Chem. 1998, 6, 1789. <https://doi.org/10.1016/S0968-0896(98)00108-4>
28. Vitagliano L., Adinolfi S., Riccio A., Sica F., Zagari A., Mazzarella L.: Protein Sci. 1998, 7, 1691. <https://doi.org/10.1002/pro.5560070804>
29. Buckle A. M., Fersht A. R.: Biochemistry 1994, 33, 1644. <https://doi.org/10.1021/bi00173a005>
30. Arevalo J. H., Taussig M. J., Wilson I. A.: Nature 1993, 365, 859. <https://doi.org/10.1038/365859a0>
31. Ren J., Nichols C., Bird L. E., Fujiwara T., Sugimoto H., Stuart D. I., Stammers D. K.: J. Biol. Chem. 2000, 275, 14316. <https://doi.org/10.1074/jbc.275.19.14316>
32. Bailey D., Cooper J. B.: Protein Sci. 1994, 3, 2129. <https://doi.org/10.1002/pro.5560031126>
33. Fan P., Suri A. K., Fiala R., Live D., Patel D. J.: J. Mol. Biol. 1996, 258, 480. <https://doi.org/10.1006/jmbi.1996.0263>
34. de la Sierra L., Munier-Lehmann H., Gilles A. M., Barzu O., Delarue M.: J. Mol. Biol. 2001, 311, 87. <https://doi.org/10.1006/jmbi.2001.4843>
35. Malinina L., Soler-Lopez M., Aymami J., Subirana J. A.: Biochemistry 2002, 41, 9341. <https://doi.org/10.1021/bi020135c>
36. Murthy K. H. M., Winborne E. L., Minnich M. D., Culp J. S., Debouck C.: J. Biol. Chem. 1992, 267, 22770.
37. Uytterhoeven K., Sponer J., Van Meervelt L.: Eur. J. Biochem. 2002, 269, 2868. <https://doi.org/10.1046/j.1432-1033.2002.02952.x>
38. Yang Y., Kochoyan M., Burgstaller P., Westhof E., Famulok M.: Science 1996, 272, 1343. <https://doi.org/10.1126/science.272.5266.1343>
39. Jiang L., Majundar A., Hu W., Jaishree T. J., Xu W., Patel D. J.: Structure 1999, 7, 817. <https://doi.org/10.1016/S0969-2126(99)80105-1>
40. Tame J. R. H., Murshudov G. N., Dodson E. J., Neil T. K., Dodson G. G., Higgins C. F., Wilkinson A. J.: Science 1994, 264, 1578. <https://doi.org/10.1126/science.8202710>
41. Bode W., Turk D., Sturzebecher J.: Eur. J. Biochem. 1990, 193, 175. <https://doi.org/10.1111/j.1432-1033.1990.tb19320.x>
42. Faber C., Sticht H., Schweimer K., Rosch P.: J. Biol. Chem. 2000, 275, 20660. <https://doi.org/10.1074/jbc.M000920200>
43. Goldgur Y., Craigie R., Cohen G. H., Fujiwara T., Yoshinaga T., Fujishita T., Sugimoto H., Endo T., Murai H., Davies D. R.: Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 13040. <https://doi.org/10.1073/pnas.96.23.13040>
44. Dieckmann T., Suzuki E., Nakamura G. K., Feigon J.: RNA 1996, 2, 628.
45. Baudet S., Janin J.: J. Mol. Biol. 1991, 219, 123. <https://doi.org/10.1016/0022-2836(91)90862-Z>
46. Nunn C. M., Garman E., Neidle S.: Biochemistry 1997, 36, 4792. <https://doi.org/10.1021/bi9628228>
47. Sali A., Veerapandian B., Cooper J. B., Foundling S. I., Hoover D. J., Blundell T. L.: EMBO J. 1989, 8, 2179. <https://doi.org/10.1002/j.1460-2075.1989.tb08340.x>
48. Badger J., Minor I., Oliveira M. A., Smith T. J., Rossmann M. G.: Proteins 1989, 6, 1. <https://doi.org/10.1002/prot.340060102>
49. Jiang L., Patel D. J.: Nat. Struct. Biol. 1998, 5, 769. <https://doi.org/10.1038/1804>
50. Christianson D. W., Lipscomb W. N.: Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 7568. <https://doi.org/10.1073/pnas.83.20.7568>
51. James M. N. G., Sielecki A. R., Brayer G. D., Delbaere L. T. J., Bauer C. A.: J. Mol. Biol. 1980, 144, 43. <https://doi.org/10.1016/0022-2836(80)90214-4>
52. Holmes M. A., Matthews B. W.: Biochemistry 1981, 20, 6912. <https://doi.org/10.1021/bi00527a026>
53. Hurley J. H., Dean A. M., Koshland D. E., Stroud R. M.: Biochemistry 1991, 30, 8671. <https://doi.org/10.1021/bi00099a026>