Collect. Czech. Chem. Commun.
2006, 71, 842-858
https://doi.org/10.1135/cccc20060842
Conformational Analysis, Solvent-Accessible Surface and Geometric Extent of Inhibitors and Substrates
Matheus Froeyena, Hans De Winterb and Piet Herdewijna,*
a Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
b Silicos NV, Wetenschapspark 7, B-3590 Diepenbeek, Belgium
References
1. J. Med. Chem. 2004, 47, 493.
< D. G., Buenemann C. L., Todorov N. P., Manallack D. T., Dean P. M.: https://doi.org/10.1021/jm034222u>
2. J. Med. Chem. 2004, 47, 947.
< A. N.: https://doi.org/10.1021/jm030520f>
3. J. Mol. Biol. 1997, 267, 727.
< G., Willett P., Glen R. C., Leach A. R., Taylor R.: https://doi.org/10.1006/jmbi.1996.0897>
4. J. Comput. Chem. 1998, 19, 1639.
< G. M., Goodsell D. S., Halliday R. S., Huey R., Hart W. E., Belew R. K., Olson A. J.: https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B>
5. Acc. Chem. Res. 1994, 27, 117.
< I. D., Meng E. C., Shoichet B. K.: https://doi.org/10.1021/ar00041a001>
6. J. Med. Chem. 2003, 46, 499.
< A. N.: https://doi.org/10.1021/jm020406h>
7. Bioorg. Med. Chem. 1995, 3, 411.
< M. C., Wang S., Driscoll J. S., Milne G. W. A.: https://doi.org/10.1016/0968-0896(95)00031-B>
8. J. Comput.-Aided Mol. Des. 1998, 12, 383.
< J., Norrby P. O., Liljefors T.: https://doi.org/10.1023/A:1008007507641>
9. J. Med. Chem. 2004, 47, 2499.
< E., Charifson P. S.: https://doi.org/10.1021/jm030563w>
10. Proteins 1996, 25, 120.
< V., Wade R. C., Vriend G., Edelman M.: https://doi.org/10.1002/(SICI)1097-0134(199605)25:1<120::AID-PROT10>3.3.CO;2-1>
11. Proteins 1999, 36, 307.
< R., Petrey D., Wolfson H. J., Nussinov R.: https://doi.org/10.1002/(SICI)1097-0134(19990815)36:3<307::AID-PROT5>3.0.CO;2-R>
12. Protein Eng. 1999, 12, 639.
< T., Wang J., Chen L., Xu X.: https://doi.org/10.1093/protein/12.8.639>
13. J. Mol. Biol. 1997, 272, 106.
< H. A., Jackson R. M., Sternberg M. J.: https://doi.org/10.1006/jmbi.1997.1203>
14. Proteins 2003, 51, 397.
< R., Weng Z.: https://doi.org/10.1002/prot.10334>
15. Curr. Opin. Struct. Biol. 1995, 5, 103.
< R. L., Wilson I. A.: https://doi.org/10.1016/0959-440X(95)80015-S>
16. Nucleic Acids Res. 2000, 28, 235.
< H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E.: https://doi.org/10.1093/nar/28.1.235>
17. J. Comput. Chem. 1990, 11, 440.
< F., Richards N. G. J., Guida W. C., Liskamp R., Lipton M., Caufield C., Chang G., Hendrickson T., Still W. C.: https://doi.org/10.1002/jcc.540110405>
18. J. Am. Chem. Soc. 1990, 112, 1419.
< M., Houk K. N., Wu Y., Still W. C., Lipton M., Chang G., Guida W. C.: https://doi.org/10.1021/ja00160a020>
19. J. Comput. Chem. 1986, 7, 230.
< P., Kollman P. A., Nguyen D. T., Case D. A.: https://doi.org/10.1002/jcc.540070216>
20. J. Am. Chem. Soc. 1990, 112, 6127.
< W. C., Tempczyk A., Hawley R. C., Hendrickson T.: https://doi.org/10.1021/ja00172a038>
21. Annu. Rev. Biophys. Bioeng. 1977, 6, 151.
< F. M.: https://doi.org/10.1146/annurev.bb.06.060177.001055>
22. J. Mol. Graphics 1988, 6, 13.
< T. E., Huang C. C., Jarvis L. E., Langridge R.: https://doi.org/10.1016/0263-7855(88)80054-7>
23. J. Chem. Inf. Comput. Sci. 1997, 37, 615.
< R., Fu Y., Lai L.: https://doi.org/10.1021/ci960169p>
24. Stat. Comput. 1991, 1, 47.
< W. S., Grosse E.: https://doi.org/10.1007/BF01890836>
25. Broeker H. B., Campbell J., Cunningham R., Denholm D., Elber G., Fearick R., Grammes C., Hart L., Hecking L., Koenig T., Kotz D., Kubaitis E., Lang R., Lehmann A., Mai A., Steger C., Tkacik T., Van der Woude J., Van Zandt J. R., Woo A.: Gnuplot 3.7; http://gnu.org.
26. J. Med. Chem. 2002, 45, 333.
< X., Xu L., Luo X., Fan K., Ji R., Pei G., Chen K., Jiang H.: https://doi.org/10.1021/jm0102710>
27. Bioorg. Med. Chem. 1998, 6, 1789.
< R., Mao C., Venkatachalan T. K., Tuel-Ahlgren L., Sudbeck E. A., Uckun F. M.: https://doi.org/10.1016/S0968-0896(98)00108-4>
28. Protein Sci. 1998, 7, 1691.
< L., Adinolfi S., Riccio A., Sica F., Zagari A., Mazzarella L.: https://doi.org/10.1002/pro.5560070804>
29. Biochemistry 1994, 33, 1644.
< A. M., Fersht A. R.: https://doi.org/10.1021/bi00173a005>
30. Nature 1993, 365, 859.
< J. H., Taussig M. J., Wilson I. A.: https://doi.org/10.1038/365859a0>
31. J. Biol. Chem. 2000, 275, 14316.
< J., Nichols C., Bird L. E., Fujiwara T., Sugimoto H., Stuart D. I., Stammers D. K.: https://doi.org/10.1074/jbc.275.19.14316>
32. Protein Sci. 1994, 3, 2129.
< D., Cooper J. B.: https://doi.org/10.1002/pro.5560031126>
33. J. Mol. Biol. 1996, 258, 480.
< P., Suri A. K., Fiala R., Live D., Patel D. J.: https://doi.org/10.1006/jmbi.1996.0263>
34. J. Mol. Biol. 2001, 311, 87.
< L., Munier-Lehmann H., Gilles A. M., Barzu O., Delarue M.: https://doi.org/10.1006/jmbi.2001.4843>
35. Biochemistry 2002, 41, 9341.
< L., Soler-Lopez M., Aymami J., Subirana J. A.: https://doi.org/10.1021/bi020135c>
36. J. Biol. Chem. 1992, 267, 22770.
K. H. M., Winborne E. L., Minnich M. D., Culp J. S., Debouck C.:
37. Eur. J. Biochem. 2002, 269, 2868.
< K., Sponer J., Van Meervelt L.: https://doi.org/10.1046/j.1432-1033.2002.02952.x>
38. Science 1996, 272, 1343.
< Y., Kochoyan M., Burgstaller P., Westhof E., Famulok M.: https://doi.org/10.1126/science.272.5266.1343>
39. Structure 1999, 7, 817.
< L., Majundar A., Hu W., Jaishree T. J., Xu W., Patel D. J.: https://doi.org/10.1016/S0969-2126(99)80105-1>
40. Science 1994, 264, 1578.
< J. R. H., Murshudov G. N., Dodson E. J., Neil T. K., Dodson G. G., Higgins C. F., Wilkinson A. J.: https://doi.org/10.1126/science.8202710>
41. Eur. J. Biochem. 1990, 193, 175.
< W., Turk D., Sturzebecher J.: https://doi.org/10.1111/j.1432-1033.1990.tb19320.x>
42. J. Biol. Chem. 2000, 275, 20660.
< C., Sticht H., Schweimer K., Rosch P.: https://doi.org/10.1074/jbc.M000920200>
43. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 13040.
< Y., Craigie R., Cohen G. H., Fujiwara T., Yoshinaga T., Fujishita T., Sugimoto H., Endo T., Murai H., Davies D. R.: https://doi.org/10.1073/pnas.96.23.13040>
44. RNA 1996, 2, 628.
T., Suzuki E., Nakamura G. K., Feigon J.:
45. J. Mol. Biol. 1991, 219, 123.
< S., Janin J.: https://doi.org/10.1016/0022-2836(91)90862-Z>
46. Biochemistry 1997, 36, 4792.
< C. M., Garman E., Neidle S.: https://doi.org/10.1021/bi9628228>
47. EMBO J. 1989, 8, 2179.
< A., Veerapandian B., Cooper J. B., Foundling S. I., Hoover D. J., Blundell T. L.: https://doi.org/10.1002/j.1460-2075.1989.tb08340.x>
48. Proteins 1989, 6, 1.
< J., Minor I., Oliveira M. A., Smith T. J., Rossmann M. G.: https://doi.org/10.1002/prot.340060102>
49. Nat. Struct. Biol. 1998, 5, 769.
< L., Patel D. J.: https://doi.org/10.1038/1804>
50. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 7568.
< D. W., Lipscomb W. N.: https://doi.org/10.1073/pnas.83.20.7568>
51. J. Mol. Biol. 1980, 144, 43.
< M. N. G., Sielecki A. R., Brayer G. D., Delbaere L. T. J., Bauer C. A.: https://doi.org/10.1016/0022-2836(80)90214-4>
52. Biochemistry 1981, 20, 6912.
< M. A., Matthews B. W.: https://doi.org/10.1021/bi00527a026>
53. Biochemistry 1991, 30, 8671.
< J. H., Dean A. M., Koshland D. E., Stroud R. M.: https://doi.org/10.1021/bi00099a026>