Collect. Czech. Chem. Commun.
2006, 71, 1029-1041
https://doi.org/10.1135/cccc20061029
Nucleic Acid Related Compounds. 136. Synthesis of 2-Amino- and 2,6-Diaminopurine Derivatives via Inverse-Electron-Demand Diels-Alder Reactions
Xiaoyu Lin and Morris J. Robins*
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-5700, U.S.A.
References
1. J. Org. Chem. 2006, 71, 4216.
< M., Nowak I., Cannon J. F., Robins M. J.: https://doi.org/10.1021/jo060340o>
2a. J. Med. Chem. 2000, 43, 1817.
< M., Holý A., Votruba I., Dvořáková H.: https://doi.org/10.1021/jm991167+>
2b. Collect. Czech. Chem. Commun. 2001, 66, 483.
< M., Holý A., Votruba I., Dvořáková H.: https://doi.org/10.1135/cccc20010483>
3a. J. Med. Chem. 2005, 48, 5869.
< M., Nauš P., Pohl R., Votruba I., Furman P. A., Tharnish P. M., Otto M. J.: https://doi.org/10.1021/jm050335x>
3b. Collect. Czech. Chem. Commun. 2005, 70, 1669; and references therein.
< P., Pohl R., Votruba I., Hocek M.: https://doi.org/10.1135/cccc20051669>
4a. Eur. J. Org. Chem. 2003, 245.
< M.: https://doi.org/10.1002/ejoc.200390025>
4b. Chem. Rev. 2003, 103, 1875.
< L. A., Gillaizeau I., Saito Y.: https://doi.org/10.1021/cr010374q>
5a. Org. Lett. 2004, 6, 2917.
< J., Janeba Z., Robins M. J.: https://doi.org/10.1021/ol048987n>
5b. Org. Lett. 2004, 6, 3421.
< J., Robins M. J.: https://doi.org/10.1021/ol048490d>
5c. Org. Lett. 2005, 7, 1149.
< J., Robins M. J.: https://doi.org/10.1021/ol050063s>
6. J. Am. Chem. Soc. 1999, 121, 5833.
< Q., Liu Y., Erion M. D.: https://doi.org/10.1021/ja9842316>
7a. J. Am. Chem. Soc. 1994, 116, 82.
< D. L., Honda T., Menezes R. F., Colletti S. L., Dang Q., Yang W.: https://doi.org/10.1021/ja00080a010>
7b. Chem. Rev. 1986, 86, 781.
< D. L.: https://doi.org/10.1021/cr00075a004>
7c. Fleming I: Frontier Orbitals and Organic Chemical Reactions. Wiley, London 1976.
8. J. Am. Chem. Soc. 1958, 80, 3738.
< H. J., Thomas H. J.: https://doi.org/10.1021/ja01547a068>
9a. J. Am. Chem. Soc. 1965, 87, 4934.
< M. J., Robins R. K.: https://doi.org/10.1021/ja00949a042>
9b. Can. J. Chem. 1981, 59, 2601.
< M. J., Uznański B.: https://doi.org/10.1139/v81-374>
9c. Can. J. Chem. 1981, 59, 2608.
< M. J., Uznański B.: https://doi.org/10.1139/v81-375>
9d. J. Org. Chem. 2003, 68, 989; and references therein.
< a Z., Francom P., Robins M. J.: https://doi.org/10.1021/jo020644k>
10. J. Am. Chem. Soc. 1951, 73, 1650.
< J., Lowy B. A.: https://doi.org/10.1021/ja01148a071>
11a. J. Org. Chem. 1978, 43, 4485.
< Y., Sasaki T., Nagato N.: https://doi.org/10.1021/jo00417a020>
11b. Helv. Chim. Acta 1989, 72, 825.
< N., Heimgartner H.: https://doi.org/10.1002/hlca.19890720424>
12. J. Med. Chem. 1974, 17, 1207.
< P. C., Mancuso R. W., Rousseau R. J., Robins R. K.: https://doi.org/10.1021/jm00257a600>
13. Chem. Ind. 1980, 541.
F. I., Shaw G.:
14. J. Chem. Soc., Perkin Trans. 1 1988, 2541.
< G., Wilson H. A., Shaw G., Ewing D.: https://doi.org/10.1039/p19880002541>
15. Acta Chem. Scand. 1999, 53, 269.
< F., Dalhus B., Gundersen L.-L., Rise F.: https://doi.org/10.3891/acta.chem.scand.53-0269>
16. J. Am. Chem. Soc. 1961, 83, 630.
< J. A., Temple C., Jr.: https://doi.org/10.1021/ja01464a031>
17. J. Am. Chem. Soc. 1960, 82, 463.
< J. A., Hewson K.: https://doi.org/10.1021/ja01487a055>
18. J. Org. Chem. 1974, 39, 1564.
< M. J., Fouron Y., Mengel R.: https://doi.org/10.1021/jo00924a025>
19. J. Am. Chem. Soc. 1976, 98, 8204.
< M. J., Mengel R., Jones R. A., Fouron Y.: https://doi.org/10.1021/ja00441a053>