Collect. Czech. Chem. Commun.
2007, 72, 435-452
https://doi.org/10.1135/cccc20070435
Mixed Transition Metal Acetylides Connected by Carbon-Rich Bridging Units: On the Way to Heterohexametallic Organometallics
Heinrich Lang* and Rico Packheiser
Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Lehrstuhl für Anorganische Chemie, Strasse der Nationen 62, 09111 Chemnitz, Germany
References
1a. Chem. Rev. 1996, 96, 759.
< V., Juris A., Venturi M., Campagna S., Serroni S.: https://doi.org/10.1021/cr941154y>
1b. Acc. Chem. Res. 1998, 31, 26.
< V., Campagna S., Denti G., Juris A., Serroni S., Venturi M.: https://doi.org/10.1021/ar950202d>
1c. Angew. Chem., Int. Ed. Engl. 1995, 34, 21.
< N. J.: https://doi.org/10.1002/anie.199500211>
1d. Coord. Chem. Rev. 2004, 248, 725.
< C. E., Humphrey M. G.: https://doi.org/10.1016/j.ccr.2004.03.009>
1e. Organometallics 2005, 24, 4280.
< M. P., Humphrey M. G., Morall J. P., Samoc M., Paul F., Roisnel T., Lapinte C.: https://doi.org/10.1021/om050030g>
1f. Dalton Trans. 2005, 17, 2821.
< P. J.: https://doi.org/10.1039/b506017f>
1g. J. Chem. Soc., Dalton Trans. 1998, 2017.
< N. J., Angela A. J., de Biani F. F., Zanello P.: https://doi.org/10.1039/a800039e>
1h. J. Am. Chem. Soc. 1998, 120, 10274.
< C., Pugin B., Togni A.: https://doi.org/10.1021/ja981137g>
1i. J. Am. Chem. Soc. 1996, 118, 9635.
< C., Bharathi P., Moore J. S.: https://doi.org/10.1021/ja961418t>
1j. J. Org. Chem. 1999, 64, 7528.
< Q. S., Pugh V., Sabat M., Pu L.: https://doi.org/10.1021/jo990856q>
1k. Coord. Chem. Rev. 1998, 178–180, 431.
< F., Lapinte C.: https://doi.org/10.1016/S0010-8545(98)00150-7>
1l. Chem. Soc. Rev. 2002, 31, 168.
< B. S., Creutz C., Sutin N.: https://doi.org/10.1039/b008034i>
1m. Nelson S. F. in: Electron Transfer in Chemistry (V. Balzani, Ed.), Vol. 1, Chap. 10. Wiley-VCH, Weinheim 2001.
1n. Acc. Chem. Res. 2000, 33, 755.
< W., Klein A., Glöckle M.: https://doi.org/10.1021/ar960067k>
1o. Coord. Chem. Rev. 2004, 248, 683.
< A., Santi S., Orian L., Bisello A.: https://doi.org/10.1016/j.ccr.2004.02.007>
1p. Chem. Soc. Rev. 1995, 121.
< M. D.: https://doi.org/10.1039/cs9952400121>
1q. Acc. Chem. Res. 1997, 30, 383.
< D.: https://doi.org/10.1021/ar970007u>
1r. J. Organomet. Chem. 2004, 689, 3968.
< M. P., Humphrey M. G.: https://doi.org/10.1016/j.jorganchem.2004.06.027>
2a. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4788.
< J., Magnera F.: https://doi.org/10.1073/pnas.052016299>
2b. Chem. Rev. 2000, 100, 169.
< M., Kaszynski P., Michl J.: https://doi.org/10.1021/cr990094z>
2c. J. Am. Chem. Soc. 1988, 110, 5225.
< P., Michl J.: https://doi.org/10.1021/ja00223a070>
3a. Chem. Soc. Rev. 1992, 21, 215.
J. F.:
3b. Chem. Rev. 1999, 99, 1643.
< F. M., Stoddart J. F.: https://doi.org/10.1021/cr970081q>
3c. Chem. Commun. 2003, 1213.
< V. G.: https://doi.org/10.1039/b209168m>
3d. Chem. Ber. 1988, 124, 1203.
J. F.:
4a. Angew. Chem., Int. Ed. 2003, 42, 2586.
< N. J., Williams C. K.: https://doi.org/10.1002/anie.200200537>
4b. J. Organomet. Chem. 2004, 689, 1393.
< V. W. W.: https://doi.org/10.1016/j.jorganchem.2003.12.029>
4c. Organometallics 2005, 24, 5241.
< M. I., Low P. J., Hartl F., Humphrey P. A., De Montigny F., Jevric M., Lapinte C., Perkins G. J., Roberts R. L., Skelton B. W., White A. H.: https://doi.org/10.1021/om050483l>
4d. J. Solid State Electrochem. 2005, 9, 717.
< P. J., Roberts R. L., Cordiner R. L., Hartl F.: https://doi.org/10.1007/s10008-005-0693-3>
4e. Chem. Rev. 2003, 103, 4175.
< S., Gladysz J. A.: https://doi.org/10.1021/cr030041o>
4f. J. Am. Chem. Soc. 2000, 122, 1949.
< M. I., Low P. J., Costuas K., Halet J. F., Best S. P., Heath G. A.: https://doi.org/10.1021/ja992002t>
4g. J. Am. Chem. Soc. 1995, 117, 7129.
< N. L., Toupet L., Lapinte C.: https://doi.org/10.1021/ja00132a013>
4h. Chem. Rev. 2006, 106, 4681.
< T., Reau R.: https://doi.org/10.1021/cr040179m>
4i. J. Organomet. Chem. 1999, 578, 3.
< V. W. W., Lo K. K. W., Wong K. M. C.: https://doi.org/10.1016/S0022-328X(98)01106-1>
5a. Adv. Organomet. Chem. 2004, 50, 179.
< M. I., Low P. J.: https://doi.org/10.1016/S0065-3055(03)50004-1>
5b. Chem. Rev. 2006, 106, PR1–PR33.
< S., Gladysz J. A.: https://doi.org/10.1021/cr068016g>
5c. J. Organomet. Chem. 2006, 691, 361.
< M. I., Jevric M., Skelton B. W., Smith M. E., White A. H., Zaitseva N. N.: https://doi.org/10.1016/j.jorganchem.2005.08.050>
5d. J. Solid State Electrochem. 2005, 9, 738.
< J., Winter R. F., Sarkar B., Zalis S.: https://doi.org/10.1007/s10008-005-0689-z>
5e. Organometallics 2001, 20, 1115.
< W. E., Amoroso A. J., Horn C. R., Jaeger M., Gladysz J. A.: https://doi.org/10.1021/om000961m>
5f. J. Am. Chem. Soc. 2000, 122, 810.
< R., Bartik T., Jaeger M., Gladysz J. A.: https://doi.org/10.1021/ja992747z>
6. Heterobimetallic systems with all-carbon bridges: Organometallics 2005, 24, 3864.
< M. I., Costuas K., Davin T., Ellis B. G., Halet J. F., Lapinte C., Low P. J., Smith M. E., Skelton B. W., Toupet L., White A. H.: https://doi.org/10.1021/om050293a>
7a. Organometallics 2004, 23, 1024.
< W., Kopacka H., Wurst K., Salzmann C., Ongania K. H., de Biani F. F., Zanello P., Bildstein B.: https://doi.org/10.1021/om034233l>
7b. Organometallics 2006, 25, 5190.
< K., Blacque O., Berke H.: https://doi.org/10.1021/om060364l>
7c. Organometallics 2005, 24, 2834.
< K., Fox T., Schmalle H. W., Berke H.: https://doi.org/10.1021/om049252p>
7d. Coord. Chem. Rev. 1998, 178–180, 409.
< D., Dixneuf P. H.: https://doi.org/10.1016/S0010-8545(98)00079-4>
8a. J. Organomet. Chem. 2004, 689, 840.
< N., Long N. J., Mahon M. F., Ooi L., Raithby P. R., Rooke S., White A. J. P., Williams D. J., Younus M.: https://doi.org/10.1016/j.jorganchem.2003.11.035>
8b. Organometallics 2005, 24, 4558.
< F., Argouarch G., Costuas K., Halet J. F., Roisnel T., Toupet L., Lapinte C.: https://doi.org/10.1021/om050403d>
8c. J. Organomet. Chem. 2003, 684, 144.
< B., Laubender M., Werner H.: https://doi.org/10.1016/S0022-328X(03)00521-7>
8d. Organometallics 2006, 25, 635.
< A., Lavastre O., Fiedler J.: https://doi.org/10.1021/om050876k>
8e. J. Organomet. Chem. 2002, 642, 259.
< S. K., Cifuentes M. P., McDonagh A. M., Humphrey M. G., Samoc M., Luther-Davies B., Asselberghs I., Persoons A.: https://doi.org/10.1016/S0022-328X(01)01281-5>
8f. J. Organomet. Chem. 2002, 660, 1.
< S. K., Ren T.: https://doi.org/10.1016/S0022-328X(02)01809-0>
8g. J. Am. Chem. Soc. 2003, 125, 5880.
< S., Coudret S., Launay J. P.: https://doi.org/10.1021/ja0299506>
8h. J. Organomet. Chem. 2001, 620, 227.
< S., Lutz M., Spek A. L., Lang H., van Koten G.: https://doi.org/10.1016/S0022-328X(00)00800-7>
8i. Organometallics 2000, 19, 5235.
< T., Ledoux I., Brasselet S., Zyss J., Lapinte C.: https://doi.org/10.1021/om0005708>
8j. Organometallics 1998, 17, 3034.
< M. C. B., Lewis J., Long N. J., Raithby P. R., Younus M., White A. J. P., Williams D. J., Payne N. N., Yellowlees L., Beljonne D., Chawdhury N., Friend R. H.: https://doi.org/10.1021/om970130p>
8k. J. Chem. Soc., Dalton Trans. 1999, 3719.
< M. I., Hall B. C., Kelly B. D., Low P. J., Skelton B. W., White A. H. J.: https://doi.org/10.1039/a905174k>
8l. Organometallics 1996, 15, 1530.
< O., Even M., Dixneuf P. H., Pacreau A., Vairon J.: https://doi.org/10.1021/om950862m>
9a. Organometallics 2005, 24, 4298.
< S. C. F., Yam V. W. W., Wong K. M. C., Cheng E. C. C., Zhu N.: https://doi.org/10.1021/om0502887>
9b. Inorg. Chem. 2003, 42, 7086.
< K. M. C., Lam S. C. F., Ko C. C., Zhu N., Yam V. W. W., Roué S., Lapinte C., Fathallah S., Costuas K., Kahlal S., Halet J. F.: https://doi.org/10.1021/ic030226d>
9c. J. Organomet. Chem. 1998, 570, 55.
< M., Long N. J., Raithby P. R., Lewis J.: https://doi.org/10.1016/S0022-328X(98)00816-X>
9d. Organometallics 1997, 16, 184.
< O., Plass J., Bachmann P., Guesmi S., Moinet C., Dixneuf P. H.: https://doi.org/10.1021/om960664a>
9e. Angew. Chem., Int Ed. 2006, 45, 7376.
< M., Gauthier N., Cifuentes M. P., Paul F., Lapinte C., Humphrey M. G.: https://doi.org/10.1002/anie.200602684>
10. J. Cluster Sci. 2001, 12, 201.
< N. T., Cifuentes M. P., Nguyen L. T., Humphrey M. G.: https://doi.org/10.1023/A:1016683331367>
11a. Organometallics 1997, 16, 2646.
< H., Long N. J., Martin A. J., Opromolla G., White A. J. P., Williams D. J., Zanello P.: https://doi.org/10.1021/om9701027>
11b. Organometallics 1998, 17, 5569.
< T., Costuas K., Mari A., Halet J. F., Lapinte C.: https://doi.org/10.1021/om980778h>
11c. Organometallics 1994, 13, 3203.
< R. R., Stang P. J.: https://doi.org/10.1021/om00020a037>
11d. Chem. Ber. 1996, 129, 607.
< T. J. J., Lindner H. J.: https://doi.org/10.1002/cber.19961290604>
11e. Chem. Commun. 1997, 219.
< M. J., Manojlovic-Muir L., Muir K. W., Puddephatt R. J., Yufit D. S.: https://doi.org/10.1039/a607214c>
11f. Organometallics 1998, 17, 3981.
< S., Stang P. J., Huang S.: https://doi.org/10.1021/om980337y>
11g. J. Am. Chem. Soc. 2006, 128, 10819.
< M. P., Powell C. E., Morrall J. P., McDonagh A. M., Lucas N. T., Humphrey M. G., Samoc M., Houbrechts S., Asselberghs I., Clays K., Persoons A., Isoshima T.: https://doi.org/10.1021/ja062246v>
11h. Angew. Chem., Int. Ed. 2007, 46, 731.
< M., Morrall J. P., Dalton G. T., Cifuentes M. P., Humphrey M. G.: https://doi.org/10.1002/anie.200602341>
11i. J. Am. Chem. Soc. 2004, 126, 12234.
< C. E., Morrall J. P., Ward S. A., Cifuentes M. P., Notaras E. G. A., Samoc M., Humphrey M. G.: https://doi.org/10.1021/ja048608l>
11j. Organometallics 2003, 22, 1402.
< A. M., Powell C. E., Morrall J. P., Cifuentes M. P., Humphrey M. G.: https://doi.org/10.1021/om020975n>
12a. Organometallics 2005, 24, 2764.
< J., Chicote M. T., Alvarez-Falcon M. M.: https://doi.org/10.1021/om0501273>
12b. Organometallics 2004, 23, 4924.
< S. H. F., Lam S. C. F., Yam V. W. W., Zhu N., Cheung K. K., Fathallah S., Costuas K., Halet J. F.: https://doi.org/10.1021/om049696l>
12c. J. Chem. Soc., Dalton Trans. 2000, 3387.
< N. J., Martin A. J., White A. J. P., Williams D. J., Fontani M., Laschi F., Zanello P.: https://doi.org/10.1039/b005186l>
12d. J. Chem. Soc., Dalton Trans. 1998, 2017.
< N. J., Martin A. J., De Biani F. F., Zanello P.: https://doi.org/10.1039/a800039e>
12e. Polyhedron 2007, 26, 284.
< C. E., Cifuentes M. P., Humphrey M. G., Willis A. C., Morrall J. P., Samoc M.: https://doi.org/10.1016/j.poly.2006.05.007>
13a. Inorg. Chem. 2005, 44, 8033.
< A., Ventura B., Flamigni L., Barigelletti F., Fuhrmann G., Baeuerle P., Goeb S., Ziessel R.: https://doi.org/10.1021/ic050596x>
13b. Eur. J. Org. Chem. 2004, 2, 235.
< G. R., Patri A. K, Holder E., Schubert U. S.: https://doi.org/10.1002/ejoc.200300399>
13c. Chem. Eur. J. 1999, 5, 3366.
< M., Harriman A., Khatyr A., Ziessel R.: https://doi.org/10.1002/(SICI)1521-3765(19991105)5:11<3366::AID-CHEM3366>3.0.CO;2-I>
13d. Adv. Inorg. Chem. 1989, 34, 1.
< E. C.: https://doi.org/10.1016/S0898-8838(08)60014-8>
13e. Adv. Inorg. Chem. Radiochem. 1969, 12, 135.
< W. R., Miller J. D.: https://doi.org/10.1016/S0065-2792(08)60049-7>
14a. Organometallics 2000, 19, 1035.
< S., Paul F., Lapinte C.: https://doi.org/10.1021/om9908231>
14b. J. Am. Chem. Soc. 2000, 122, 10121.
< Y., Wolf M. O.: https://doi.org/10.1021/ja0008564>
14c. J. Organomet. Chem. 1995, 493, C9.
< E., Lo Sterzo C., Crescenzi R., Frachey G.: https://doi.org/10.1016/0022-328X(94)05471-M>
15a. Organometallics 2004, 23, 184.
< B., Tranchier J. P., Rose-Munch F., Rose E., Stephenson G. R., Guyard-Duhayon C.: https://doi.org/10.1021/om034168f>
15b. J. Chem. Soc., Dalton Trans. 2001, 22, 3250.
< W. Y., Lu G. L., Ng K. F., Choi K. H., Lin Z.: https://doi.org/10.1039/b105016h>
15c. Organometallics 1996, 15, 4352.
< E., Lo Sterzo C., Trezzi F.: https://doi.org/10.1021/om960516k>
16. Organometallics 2006, 25, 1836.
< H., Packheiser R., Walfort B.: https://doi.org/10.1021/om058042p>
17. Organometallics 2006, 25, 4579.
< R., Walfort B., Lang H.: https://doi.org/10.1021/om0602355>
18. Packheiser R.: Ph.D. Thesis. Technical University Chemnitz, Chemnitz 2007.
19a. Organometallics 2000, 19, 4016.
< W., Back S., Rheinwald G., Köhler K., Pritzkow H., Lang H.: https://doi.org/10.1021/om000335p>
19b. Organometallics 1999, 18, 5725.
< W., Back S., Lang H.: https://doi.org/10.1021/om990476v>
19c. Organometallics 2000, 19, 5769.
< W., Back S., Rheinwald G., Koehler K., Zsolnai L., Huttner G., Lang H.: https://doi.org/10.1021/om000617p>
20a. Coord. Chem. Rev. 2000, 206–207, 101.
< H., George D. S. A., Rheinwald G.: https://doi.org/10.1016/S0010-8545(00)00270-8>
20b. J. Prakt. Chem. 1999, 341, 1.
< H., Rheinwald G.: https://doi.org/10.1002/(SICI)1521-3897(199901)341:1<1::AID-PRAC1>3.0.CO;2-R>
20c. Coord. Chem. Rev. 1995, 143, 113.
< H., Köhler K., Blau S.: https://doi.org/10.1016/0010-8545(94)07001-Z>
20d. J. Organomet. Chem. 2002, 641, 41.
< H., Stein T.: https://doi.org/10.1016/S0022-328X(01)01288-8>
21. Organometallics 2001, 20, 2686.
< I., Berenguer J. R., Eguizabal E., Fornies J., Lalinde E.: https://doi.org/10.1021/om010097d>
22. Organometallics 1997, 16, 2038.
< I. Y., Lin J. T., Luo J., Sun S. S., Li C. S., Lin K. J., Tsai C., Hsu C. C., Lin J. L.: https://doi.org/10.1021/om9610657>
23. Inorg. Chem. Commun. 2007, 10, 580.
< R., Lang H.: https://doi.org/10.1016/j.inoche.2007.02.002>
24a. Organometallics 2003, 22, 1512.
< C. C., Lin Y. C., Huang S. L., Liu Y. H., Wang Y.: https://doi.org/10.1021/om020913x>
24b. Organometallics 2005, 24, 4280.
< M. P., Humphrey M. G., Morrall J. P., Samoc M., Paul F., Lapinte C., Roisnel T.: https://doi.org/10.1021/om050030g>
24c. Can. J. Chem. 2005, 83, 716.
< A., Ye F., Babu G., Ikemoto T., Otera J.: https://doi.org/10.1139/v05-038>
24d. J. Am. Chem. Soc. 2002, 124, 14696.
< H. Y., Lu W., Li Y., Chan M. C. W., Che C. M., Cheung K. K., Zhu N.: https://doi.org/10.1021/ja0209417>
25a. Chem. Mater. 1996, 8, 2030.
< D., Lee S., Moore J. S., Zhang P., Hirsch K. A., Gardner G. B. A., Covey C., Prentice C. L.: https://doi.org/10.1021/cm950594i>
25b. Chem. Eur. J. 1995, 1, 211.
< S., Denti G., Serroni S., Juris A., Venturi M., Riceunto V., Balzani V.: https://doi.org/10.1002/chem.19950010404>
25c. Angew. Chem., Int. Ed. Engl. 1994, 33, 1360.
< J. S., Pearson D. L., Tour J. M.: https://doi.org/10.1002/anie.199413601>
25d. Angew. Chem., Int. Ed. Engl. 1993, 32, 1354.
Z., Moore J. S.:
25d. J. Am. Chem. Soc. 1994, 116, 4537.
< Z., Kahr M., Walker K. L., Wilkins C. L., Moore J. S.: https://doi.org/10.1021/ja00090a002>
25e. Macromolecules 1998, 31, 8091.
< C., Bharathi P., Moore J. S.: https://doi.org/10.1021/ma980225i>
25f. Chem. Commun. 2006, 4706.
< G. J., Urasinska B., Wang C., Bryce M. R., Grace I., Lambert C. J.: https://doi.org/10.1039/b613347a>
26a. Coord. Chem. Rev. 2007, 251, 203.
< P., Roy S.: https://doi.org/10.1016/j.ccr.2006.07.001>
26b. Special Issue on the 50th Anniversary of the Discovery of Ferrocene (R. D. Adams, Ed.): J. Organomet. Chem. 2001, 637–639; and references therein.
27. Jakob A.: Ph.D. Thesis, Technical University Chemnitz, Chemnitz 2007.
28. Chem. Commun. 2006, 2283.
< G., Carella A., Launay J. P., Rapenne G.: https://doi.org/10.1039/b603508f>
29. Inorg. Chem. Commun. 1999, 2, 584.
< S., Frosch W., del Rio I., van Koten G., Lang H.: https://doi.org/10.1016/S1387-7003(99)00158-6>
30. Jord. J. Chem. 2007, 1, 121.
R., Walfort B., Lang H.: