Collect. Czech. Chem. Commun. 2009, 74, 217-241
https://doi.org/10.1135/cccc2008191
Published online 2009-02-11 11:38:15

A comparative QSAR study of SVM and PPR in the correlation of lithium cation basicities

Alan R. Katritzkya,*, Yueying Rena, Svetoslav H. Slavova and Mati Karelsonb,c

a Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
b Department of Chemistry, University of Tartu, 2 Jakobi Street, Tartu 51014, Estonia
c Department of Chemistry, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia

References

1. Tämm K., Fara D. C., Katritzky A. R., Burk P., Karelson M.: J. Phys. Chem. A 2004, 108, 4812. <https://doi.org/10.1021/jp037594n>
2. Jover J., Bosque R., Sales J.: J. Chem. Inf. Comput. Sci. 2004, 44, 1727. <https://doi.org/10.1021/ci0498362>
3. NIST Chemistry Web Book Standard Reference Database No. 69. July 2001 Release.
4. Smith B. J., Radom L.: J. Am. Chem. Soc. 1993, 115, 4885. <https://doi.org/10.1021/ja00064a058>
5. Freiser B. S.: Organometallic Ion Chemistry. Kluwer, Dordrecht 1996.
6. Staley R. H., Beauchamp J. L.: J. Am. Chem. Soc. 1975, 97, 5920. <https://doi.org/10.1021/ja00853a050>
7. Woodin R. L., Beauchamp J. L.: J. Am. Chem. Soc. 1978, 100, 501. <https://doi.org/10.1021/ja00470a024>
8. Keesee R. G., Castleman A. W.: J. Phys. Chem. Ref. Data 1986, 15, 1011. <https://doi.org/10.1063/1.555757>
9. Taft R. W., Anvia F., Gal J.-F., Walsh S., Capon M., Holmes M. C., Hosn K., Oloumi G., Vasanwala R., Yazdani S.: Pure Appl. Chem. 1990, 62, 17. <https://doi.org/10.1351/pac199062010017>
10. Speers P., Laidig K. E.: J. Chem. Soc., Perkin Trans. 2 1994, 799. <https://doi.org/10.1039/p29940000799>
11. Fujii T.: Mass Spectrom. Rev. 2000, 19, 111. <https://doi.org/10.1002/1098-2787(200005/06)19:3<111::AID-MAS1>3.0.CO;2-K>
12. Maeda H., Irie M., Than S., Kikukawa K., Mishima M.: Bull. Chem. Soc. Jpn. 2007, 80, 195. <https://doi.org/10.1246/bcsj.80.195>
13. Tissandier M. D., Cowen K. A., Feng W. Y., Gundlach E., Cohen M. H., Earhart A. D., Coe J. V., Tuttle T. R., Jr.: J. Phys. Chem. A 1998, 102, 7787. <https://doi.org/10.1021/jp982638r>
14. Wieting R. D., Staley R. H., Beauchamp J. L.: J. Am. Chem. Soc. 1975, 97, 924. <https://doi.org/10.1021/ja00837a057>
15. Alcami M., Mó O., Yáñez M., Anvia F., Taft R. W.: J. Phys. Chem. 1990, 94, 4796. <https://doi.org/10.1021/j100375a011>
16. Buncel E., Decouzon M., Formento A., Gal J. F., Herreros M., Li L., Maria P. C.: J. Am. Soc. Mass Spectrom. 1997, 8, 262. <https://doi.org/10.1016/S1044-0305(96)00255-3>
17. Gal J. F., Maria P. C., Decouzon M.: Int. J. Mass Spectrom. 2002, 217, 75. <https://doi.org/10.1016/S1387-3806(02)00534-1>
18. Dzidic I., Kebarle P.: J. Phys. Chem. 1970, 74, 1466. <https://doi.org/10.1021/j100702a013>
19. Rodgers M. T., Armentrout P. B.: J. Phys. Chem. A 1997, 101, 2614. <https://doi.org/10.1021/jp970154+>
20. Lin C. Y., Dunbar R. C.: Organometallics 1997, 16, 2691. <https://doi.org/10.1021/om960949n>
21. Feng W. Y., Gronert S., Lebrilla C.: J. Phys. Chem. A 2003, 107, 405. <https://doi.org/10.1021/jp022112d>
22. García-Muruais A., Cabaleiro-Lago E. M., Hermida-Ramón J. M., Ríos M. A.: Chem. Phys. 2000, 254, 109. <https://doi.org/10.1016/S0301-0104(00)00008-2>
23. Remko M., Liedl K. R., Rode B. M.: J. Phys. Chem. A 1998, 102, 771. <https://doi.org/10.1021/jp9725801>
24. Burk P., Koppel I. A., Koppel I., Kurg R., Gal J. F., Maria P. C., Herreros M., Notario R., Abboud J. L. M., Anvia F., Taft R. W.: J. Phys. Chem. A 2000, 104, 2824. <https://doi.org/10.1021/jp9931399>
25. Gal J. F., Maria P. C., Mó O., Yáñez M., Kuck D.: Chem. Eur. J. 2006, 12, 7676. <https://doi.org/10.1002/chem.200501572>
26. Gal J. F., Maria P. C., Decouzon M., Mó O., Yáñez M.: Int. J. Mass Spectrom. 2002, 219, 445. <https://doi.org/10.1016/S1387-3806(02)00699-1>
27. Gal J. F., Maria P. C., Decouzon M., Mó O., Yáñez M., Abboud J. L. M.: J. Am. Chem. Soc. 2003, 125, 10394. <https://doi.org/10.1021/ja029843b>
28. Becke A. D.: J. Chem. Phys. 1993, 98, 5648. <https://doi.org/10.1063/1.464913>
29. Burk P., Sults, M.-L., Tammiku-Taul J.: Proc. Estonian Acad. Sci. Chem. 2007, 56, 107.
30. Hallmann M., Raczynska E. D., Gal J. F., Maria P. C.: Int. J. Mass Spectrom. 2007, 267, 315. <https://doi.org/10.1016/j.ijms.2007.02.058>
31. www.hyper.com.
32. www.codessa-pro.com.
33. Karelson M.: Molecular Descriptors in QSAR/QSPR. Wiley-Interscience, New York 2000.
34. Vapnik V. in: Advanced in Kernel Methods: Support Vector Learning (B. Scholkopf, B. Burges and A. Smola, Eds). The MIT Press, Cambridge, MA 1999.
35. Friedman J. H.: J. Am. Stat. Assoc. 1987, 82, 249. <https://doi.org/10.2307/2289161>
36. www.r-project.org.
37. Katritzky A. R., Kuanar M., Fara D. C., Karelson M., Acree W. E.: J. Bioorg. Med. Chem. 2004, 12, 4735. <https://doi.org/10.1016/j.bmc.2004.05.028>
38. Eriksson L., Jaworska J., Worth A. P., Cronin M. T. D., McDowell R. M., Gramatica P.: Environ. Health Perspect. 2003, 111, 1361. <https://doi.org/10.1289/ehp.5758>
39. Stanton D. T., Jurs P. C.: Anal. Chem. 1990, 62, 2323. <https://doi.org/10.1021/ac00220a013>
40. Sannigrahi A. B.: Adv. Quantum Chem. 1992, 23, 301. <https://doi.org/10.1016/S0065-3276(08)60032-5>