Collect. Czech. Chem. Commun. 2009, 74, 1179-1193
https://doi.org/10.1135/cccc2009025
Published online 2009-08-11 16:51:29

Biotransformations of morphine alkaloids by fungi: N-demethylations, oxidations, and reductions

Vigi Chaudharya, Hannes Leischa, Alena Moudraa, Blake Allena, Vincenzo De Lucaa, D. Phillip Coxb and Tomáš Hudlickýa,*

a Department of Chemistry and Centre for Biotechnology, Brock University, 500 Glenridge Avenue, St. Catharines ON L2S 3A1, Canada
b Noramco Inc., 503 Carr Road, Suite 200, Wilmington, DE 19809, USA

References

1a. Booth M.: Opium: A History. St. Martin’s Press, New York 1998.
1b. Kappor L. D.: Opium Poppy: Botany, Chemistry, and Pharmacology. Food Products Press, New York 1995.
1c. For reviews on morphine synthesis see: Zezula J., Hudlicky T.: Synlett 2005, 388.
1d. Taber D. F., Neubert T. D., Schlecht M. F. in: Strategies and Tactics in Organic Synthesis (M. Harmata, Ed.), Vol. 5, pp. 353–389. Elsevier, London 2004.
1e. Blakemore P. R., White J. D.: Chem. Commun. 2002, 1159. <https://doi.org/10.1039/b111551k>
1f. Novak B. H., Hudlicky T., Reed J. W., Mulzer J., Trauner D.: Curr. Org. Chem. 2000, 4, 343. <https://doi.org/10.2174/1385272003376292>
1g. Hudlicky T., Butora G., Fearnley S. P., Gum A. G., Stabile M. R. in: Studies in Natural Product Chemistry (Atta-ur-rahman, Ed.), Vol. 18, pp. 43–154. Elsevier, Amsterdam 1996.
1h. Waldman H.: Org. Synth. Highlights II 1995, 407.
1i. Maier M.: Org. Synth. Highlights II 1995, 357. <https://doi.org/10.1002/9783527619948.ch38>
2a. Yu H., Prisinzano T., Dersch C. M., Marcus J., Rothman R. B., Jacobsen A. E., Rice K. C.: Bioorg. Med. Chem. Lett. 2002, 12, 165. <https://doi.org/10.1016/S0960-894X(01)00689-8>
2b. Hageman H. A.: Org. React. 1953, 7, 198.
2c. von Braun J.: Chem. Ber. 1900, 33, 1438. <https://doi.org/10.1002/cber.19000330208>
3a. Cooley J. H., Evain E. J.: Synthesis 1989, 1. <https://doi.org/10.1055/s-1989-27129>
3b. Hobson J. D., McCluskey J. G.: J. Chem. Soc. 1967, 2015.
3c. Montzka T. A., Matiskella J. D., Partyka R. A.: Tetrahedron Lett. 1974, 15, 1325. <https://doi.org/10.1016/S0040-4039(01)82479-5>
3d. Rice K. C.: J. Org. Chem. 1975, 40, 1850. <https://doi.org/10.1021/jo00900a044>
3e. Olofson R. A., Schnur R. C., Bunes L., Pepe J. P.: Tetrahedron Lett. 1977, 18, 1567. <https://doi.org/10.1016/S0040-4039(01)93104-1>
3f. Kapnang H., Charles G.: Tetrahedron Lett. 1983, 24, 3233. <https://doi.org/10.1016/S0040-4039(00)88143-5>
3g. Olofson R. A., Martz J. T., Senet J.-P., Piteau M., Malfroot T.: J. Org. Chem. 1984, 49, 2081. <https://doi.org/10.1021/jo00185a072>
3h. Greiner E., Spetea M., Krassnig R., Schüllner F., Aceto M., Harris L. S., Traynor J. R., Woods J. H., Coop A., Schmidhammer H.: J. Med. Chem. 2003, 46, 1758. <https://doi.org/10.1021/jm021118o>
3i. Hamilton G. L., Backes B. J.: Tetrahedron Lett. 2006, 47, 2229. <https://doi.org/10.1016/j.tetlet.2006.01.104>
4a. McCamley K., Ripper J. A., Singer R. D., Scammells P. J.: J. Org. Chem. 2003, 68, 9847. <https://doi.org/10.1021/jo035243z>
4b. Scammells P. J., Gathergood N., Ripper J.: U.S. 7405301; Chem. Abstr. 2002, 136, 200331.
4c. Dong Z., Scammels P. J.: J. Org. Chem. 2007, 72, 9881. <https://doi.org/10.1021/jo071171q>
5. Ripper J. A., Tiekink E. R. T., Scammells P. J.: Bioorg. Med. Chem. Lett. 2001, 11, 443. <https://doi.org/10.1016/S0960-894X(00)00690-9>
6. Carroll R. J., Leisch H., Scocchera E., Hudlicky T., Cox D. P.: Adv. Synth. Catal. 2008, 350, 2984. <https://doi.org/10.1002/adsc.200800667>
7. Kieslich K.: Microbial Transformations of Non-Steroid Cyclic Compounds, pp. 213–215. Thieme, Stuttgart 1976.
8a. Iizuka K., Okuda S., Aida K., Asai T., Tsuda K., Yamada M., Seki I.: Chem. Pharm. Bull. 1960, 8, 1056.
8b. Iizuka K., Yamada M., Suzuki J., Seki I., Aida K., Okuda S., Asai T., Tsuda K.: Chem. Pharm. Bull. 1962, 10, 67. <https://doi.org/10.1248/cpb.10.67>
8c. Yamada M., Iizuka K., Okuda S., Aida K., Asai T., Tsuda K.: Chem. Pharm. Bull. 1962, 10, 981. <https://doi.org/10.1248/cpb.10.981>
8d. Yamada M., Iizuka K., Okuds S., Asai T., Tsuda K.: Chem. Pharm. Bull. 1963, 11, 206. <https://doi.org/10.1248/cpb.11.206>
9. Groger D., Schmauder H. P.: Experientia 1969, 25, 95. <https://doi.org/10.1007/BF01903920>
10. Mitscher L. A., Andres W. W., Morton G. O., Patterson E. L.: Experientia 1968, 24, 133. <https://doi.org/10.1007/BF02146941>
11. Sewell G. J., Soper C. J., Parfitt R. T.: Appl. Microbiol. Biotechnol. 1984, 19, 247. <https://doi.org/10.1007/BF00251845>
12. Madyastha K. M., Reddy G. V. B.: J. Chem. Soc., Perkin Trans. 1 1994, 911. <https://doi.org/10.1039/p19940000911>
13. Abel A. M., Carnell A. J., Davis J. A., Paylor M.: Biotechnol. Lett. 2002, 24, 1291. <https://doi.org/10.1023/A:1016218211300>
14. Hu S., Genain G., Azerad R.: Steroids 1995, 60, 337. <https://doi.org/10.1016/0039-128X(95)00006-C>
15. Fonken G. S., Herr M. E., Murray H. C., Reinkee L. M.: J. Am. Chem. Soc. 1967, 89, 672. <https://doi.org/10.1021/ja00979a035>
16. Johnson R. A., Fonken G. S., Herr M. E., Murray H. C.: J. Org. Chem. 1968, 33, 3217. <https://doi.org/10.1021/jo01272a039>
17. Herr M. E., Johnson R. A., Murray H. C., Reineke L. M., Fonken G. S.: J. Org. Chem. 1968, 33, 3201. <https://doi.org/10.1021/jo01272a037>
18. Holmlund C. E., Andrews W. W., Shay A. J.: J. Am. Chem. Soc. 1959, 81, 4751.
19. Chen K., Wey H.: Enzyme Microbial Technol. 1990, 12, 616. <https://doi.org/10.1016/0141-0229(90)90136-E>
20. Gibson M., Soper C. J., Parfitt R. T., Sewell G. J.: Enzyme Microbial Technol. 1984, 6, 471. <https://doi.org/10.1016/0141-0229(84)90099-1>
21a. Abel A. M., Allan G. R., Carnell A. J., Alf Davis J.: Chem. Commun. 2002, 1762. <https://doi.org/10.1039/b204697k>
21b. Abel A. M., Carnell A. J., Alf Davis J., Paylor M.: Enzyme Microbial Technol. 2003, 33, 743. <https://doi.org/10.1016/S0141-0229(03)00207-2>
22. McCamley K., Ripper J. A., Singer R. D., Scammels P. J.: J. Org. Chem. 2003, 68, 9847. <https://doi.org/10.1021/jo035243z>
23. Madyastha K. M., Reddy G. V. B., Sridhar G. R.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2000, 39, 377.
24. Rice K. C., Newman A. H.: U.S. 5668285, 1997; Chem. Abstr. 1997, 127, 278341.
25. Currie A. C., Gillon J., Newbold G. T., Spring F. S.: J. Chem. Soc. 1960, 773. <https://doi.org/10.1039/jr9600000773>
26. Bartels-Keith J. R.: J. Chem. Soc. C 1966, 617. <https://doi.org/10.1039/j39660000617>
27. Goto K., Shishido H.: Bull. Chem. Soc. Jpn. 1935, 10, 597. <https://doi.org/10.1246/bcsj.10.597>
28. Parker K. A., Fokas D.: J. Org. Chem. 2006, 71, 449. <https://doi.org/10.1021/jo0513008>
29. Bobbitt J., Weiss U., Hanessian D.: J. Org. Chem. 1959, 24, 1582. <https://doi.org/10.1021/jo01092a615>
30a. Tanimoto H., Saito R., Chida N.: Tetrahedron Lett. 2008, 49, 358. <https://doi.org/10.1016/j.tetlet.2007.11.037>
30b. Elad D., Ginsburg D.: J. Am. Chem. Soc. 1956, 78, 3691. <https://doi.org/10.1021/ja01596a036>
31a. NL 8203204; Chem. Abstr. 1983, 99, 54045.
31b. Olofson R. A., Pepe J. P.: U.S. 4141897; Chem. Abstr. 1979, 91, 57263.
32a. Israilov I. A., Denisenko O. N., Yunusov M. S., Yunusov S. Yu., Muraveva D. A.: Khim. Prir. Soedin. 1977, 5, 714; Chem. Abstr. 1978, 88, 170357.
32b. Israilov I. A., Denisenko O. N., Yunusov M. S., Muraveva D. A., Yunusov S. Yu.: Khim. Prir. Soedin.. 1978, 4, 474; Chem. Abstr. 1978, 89, 193844.