Collect. Czech. Chem. Commun.
2010, 75, 359-369
https://doi.org/10.1135/cccc2009510
Published online 2010-03-25 09:20:57
Critical consolute point in hard-sphere binary mixtures: Effect of the value of the eighth and higher virial coefficients on its location
Mariano López De Haroa, Anatol Malijevskýb,* and Stanislav Labíkb
a Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain
b Department of Physical Chemistry, Institute of Chemical Technology, Prague and Center for Biomolecules and Complex Molecular Systems, Technická 5, 166 28 Prague 6, Czech Republic
References
1. Commun. Phys. Lab. Univ. Leiden 1901, 71, 3.
H.:
2. Rev. Mod. Phys. 1955, 27, 412.
< T.: https://doi.org/10.1103/RevModPhys.27.412>
3. J. Stat. Phys. 1975, 13, 337.
< T., Miyoshi K.: https://doi.org/10.1007/BF01012012>
4. Mol. Phys. 1996, 87, 991.
< F., Fiumara G., Giaquinta P. V.: https://doi.org/10.1080/00268979600100671>
5. Mol. Phys. 1997, 92, 173.
< E., Almarza N. G., Calzas D. S., González M. A.: https://doi.org/10.1080/00268979709482086>
6. Phys. Rev. E 1998, 57, 4486.
< E., Almarza N. G., González M. A., Bermejo F. J.: https://doi.org/10.1103/PhysRevE.57.4486>
7. Mol. Phys. 1998, 94, 877.
< R. J., Saija F., Giaquinta P. V.: https://doi.org/10.1080/00268979809482383>
8. Fluid Phase Equilib. 2003, 212, 183.
< A. Yu., Masters A. J.: https://doi.org/10.1016/S0378-3812(03)00282-6>
9. Labík S., Kolafa J.: Mol. Phys., submitted.
10. J. Phys.: Condens. Matter 2008, 20, 283102.
< A. J.: https://doi.org/10.1088/0953-8984/20/28/283102>
11. For the latter system this was proved by J. Chem. Phys. 1998, 108, 3074.
< C.: https://doi.org/10.1063/1.475698>
12. J. Chem. Phys. 2004, 121, 6918.
< M., Tejero C. F.: https://doi.org/10.1063/1.1791611>
13. J. Chem. Phys. 1970, 53, 471.
< T.: https://doi.org/10.1063/1.1673824>
14. J. Chem. Phys. 1971, 54, 1523.
< G. A., Carnahan N. F., Starling K. F., Leland T. W.: https://doi.org/10.1063/1.1675048>
15a. J. Chem. Phys. 1999, 111, 5455.
< R. J.: https://doi.org/10.1063/1.479805>
15b. See also Barrio C., Solana J. R. in: Theory and Simulation of Hard-Sphere Fluids and Related Systems, Lecture Notes in Physics (A. Mulero, Ed.), Vol. 753, p. 133. Springer, Berlin, Heidelberg 2008.
16. The formulae by Wheatley require as input the virial coefficients of a pure hard-sphere fluid. Here we have used the values reported by van Rensburg17, Labík18 and Clisby and McCoy19,20.
17. J. Phys. A: Math. Gen. 1993, 26, 4805.
< E. J.: https://doi.org/10.1088/0305-4470/26/19/014>
18. Phys. Rev. E 2005, 71, 021105.
< S., Kolafa J., Malijevský A.: https://doi.org/10.1103/PhysRevE.71.021105>
19. Pramana 2005, 64, 775.
< N., McCoy B. M.: https://doi.org/10.1007/BF02704582>
20. J. Stat. Phys. 2006, 122, 15.
< N., McCoy B. M.: https://doi.org/10.1007/s10955-005-8080-0>
21. Kolafa J.: Private communication. We are grateful to Prof. J. Kolafa for checking out our result. The software NSK is a graphically-oriented software for calculating phase equilibrium phenomena of binary mixtures described by classical equations of state. It is accessible through Prof. Kolafa’s personal webpage: http://www.icpf.cas.cz/jiri/.