Collect. Czech. Chem. Commun.
2011, 76, 1509-1527
https://doi.org/10.1135/cccc2011166
Published online 2011-12-16 14:16:13
Assessment on the effects of the operational conditions on the manufacture of PLA-based composites using an integrated compounding–injection moulding machine
Daniel Gonzáleza,b, Ana Rita Camposc, Antonio M. Cunhad, Valentín Santosa,b,* and Juan Carlos Parajóa,b
a Chemical Engineering Department, Politechnical Building, Campus Ourense, University of Vigo, 32004 Ourense, Spain
b CITI, Investigation, Transfer and Innovation Center, Avda. Galicia No. 2, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
c PIEP – Innovation in Polymer Engineering, Campus de Azurém, 4800-058 Guimarães, Portugal
d IPC – Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
References
1. Biofuels Bioprod. Bioref. 2010, 4, 25.
< L., Worrell E., Patel M.: https://doi.org/10.1002/bbb.189>
2. Polym. Rev. 2009, 49, 65.
< A. U. B., Collares-Queiroz F. P.: https://doi.org/10.1080/15583720902834759>
3. Adv. Polym. Sci. 2002, 157, 1.
< A.-C., Varma I. K.: https://doi.org/10.1007/3-540-45734-8_1>
4. Prog. Polym. Sci. 2002, 27, 87.
< M.: https://doi.org/10.1016/S0079-6700(01)00039-9>
5. Polym. Rev. 2009, 49, 107.
< M., Hirata M., Kimura Y.: https://doi.org/10.1080/15583720902834825>
6. Polymer 1983, 24, 53.
< F., Vert M., Chapelle S., Granger P.: https://doi.org/10.1016/0032-3861(83)90080-0>
7. Korea-Australia Rheol. J. 2005, 17, 71.
S., Lee J. W.:
8. J. Polym. Environ. 2000, 8, 1.
< J. R., Lehermeier H., Mang M.: https://doi.org/10.1023/A:1010185910301>
9. Plast. Rubber Compos. 2006, 35, 233.
A. M., Campos A. R., Cristovao C., Vila C., Santos V., Parajó J. C.:
10. J. Appl. Polym. Sci. 2005, 97, 2214.
< A. P., Oksman K., Sain M.: https://doi.org/10.1002/app.21779>
11. Carbohydr. Polym. 2008, 71, 343.
M., Thomas S.:
12. Ind. Eng. Chem. Res. 2004, 43, 4883.
< A. C., Mohanty A. K., Misra M., Drzal L. T.: https://doi.org/10.1021/ie030873c>
13. Compos. Sci. Technol. 2008, 68, 1601.
< B., Müssig J.: https://doi.org/10.1016/j.compscitech.2008.01.004>
14. Cellulose 2006, 13, 271.
< J., Fink H. P.: https://doi.org/10.1007/s10570-005-9045-9>
15. Compos. Sci. Technol. 2008, 68, 944.
< C., Campos A. R., Cristovao C., Cunha A. M., Santos V., Parajó J. C.: https://doi.org/10.1016/j.compscitech.2007.08.006>
16. J. Mater. Sci. 2005, 40, 4221.
< M. S., Mohanty A. K., Drzal L. T., Schut E., Misra M.: https://doi.org/10.1007/s10853-005-1998-4>
17. Bioresour. Technol. 2008, 99, 4661.
< A.: https://doi.org/10.1016/j.biortech.2007.09.043>
18. Compos. Part A 2009, 40, 810.
< N., Herrmann A. S., Müssig J.: https://doi.org/10.1016/j.compositesa.2009.04.003>
19. Polym. Eng. Sci. 2007, 47, 1141.
< S., Viana J. C., Reis R. L., Mano J. F.: https://doi.org/10.1002/pen.20799>
20. Macromolecules 1998, 31, 3895.
< J. R., Prud’homme R. E., Wisniewski M., Le Borgne A., Spassky N.: https://doi.org/10.1021/ma971545p>
21. Hatakeyama T., Quinn F. X.: Thermal Analysis. Fundamentals and Applications to Polymer Science. John Willey and Sons, New York 1994.
22. Kolloid-Z. u. Z Polymere 1973, 251, 980.
< E. W., Sterzel H. J., Wegner G.: https://doi.org/10.1007/BF01498927>
23. Polymer 2001, 42, 6209.
< O., Avérous L.: https://doi.org/10.1016/S0032-3861(01)00086-6>
24. J. Polym. Environ. 2001, 9, 63.
< D.: https://doi.org/10.1023/A:1020200822435>
25. Polym. Degrad. Stab. 2005, 90, 303.
< S. T., Tarantili P. A., Avgerinos E., Andreopoulos A. G., Koukios E. G.: https://doi.org/10.1016/j.polymdegradstab.2005.02.020>