Collect. Czech. Chem. Commun.
2011, 76, 1651-1667
https://doi.org/10.1135/cccc2011106
Published online 2012-01-04 12:30:23
The influence of the host–guest interaction on the oxidation of natural flavonoid dyes
Šárka Ramešováa, Romana Sokolováa,*, Ilaria Deganob, Magdaléna Hromadováa, Miroslav Gála, Viliam Kolivoškaa and Maria Perla Colombinib
a J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague, Czech Republic
b Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, 56100 Pisa, Italy
References
1. Life Sci. 1999, 65, 337.
< G., Mascolo N., Izzo A. A., Capasso F.: https://doi.org/10.1016/S0024-3205(99)00120-4>
2. Hofenk de Graaf J.: The Colourful Past, Origins, Chemistry and Identification of Natural Dyestuffs. Abegg-Stiftung and Archetype Publications Ltd., London 2004.
3. J. Am. Inst. Conserv. 1992, 31, 237.
< J., Rosario-Chirinos N.: https://doi.org/10.2307/3179495>
4. J. Pharm. Biomed. Anal. 1994, 12, 325.
< H. P., Kaufman A. D., Lunte C. E.: https://doi.org/10.1016/0731-7085(94)90007-8>
5. J. Food Compos. Anal. 2002, 15, 103.
< D. P., Rossiter J. T.: https://doi.org/10.1006/jfca.2001.1030>
6. Electrochem. Commun. 2007, 9, 2246.
< A., Kikandi S., Sadik O. A.: https://doi.org/10.1016/j.elecom.2007.06.026>
7. Anal. Bioanal. Chem. 2012, 402, 975.
< , Sokolová R., Degano I., Žabka J., Bulíčková J., Gál M.: https://doi.org/10.1007/s00216-011-5504-3>
8. Ramešová Š.: Diploma Thesis. Charles University in Prague, Department of Analytical Chemistry, Prague 2011.
9. Can. J. Chem. 1991, 69, 1994.
< G. M., Sala L. F.: https://doi.org/10.1139/v91-288>
10. Free Radical Biol. Med. 2001, 30, 370.
< G., Moridani M. Y., Chan T. S., O’Brien P. J.: https://doi.org/10.1016/S0891-5849(00)00481-0>
11. J. Pharm. Sci. 2005, 94, 1079.
< Y., Haworth I. S., Zuo Z., Chow M. S. S., Chow A. H. L.: https://doi.org/10.1002/jps.20325>
12. Bioorg. Med. Chem. 2010, 18, 5025.
< C., Cifuentes C., Alfaro M., Miranda S., Barriga G., Olea-Azar C.: https://doi.org/10.1016/j.bmc.2010.05.079>
13. Spectrochim. Acta, Part A 2007, 67, 230.
C., Moyano L., Yañez C., Olea-Azar C.:
14. J. Agric. Food Chem. 1997, 45, 2442.
< N., Marchal L., Billaud C., Nicolas J.: https://doi.org/10.1021/jf9607932>
15. J. Am. Chem. Soc. 1985, 107, 3411.
< T., Evans D. H., Osa T., Kobayashi N.: https://doi.org/10.1021/ja00298a003>
16. J. Electroanal. Chem. 1991, 310, 179.
< V. V., Mamedjarova I. A., Nefedova M. N., Pysnograeva N. I., Sokolov V. I., Pospíšil L., Hanzlík J.: https://doi.org/10.1016/0022-0728(91)85261-M>
17. Chem. Pharm. Bull. 1984, 32, 839.
< K., Inoue S., Kusu F., Otagiri M., Uekama K.: https://doi.org/10.1248/cpb.32.839>
18. J. Mater. Sci. 2006, 41, 2195.
< N., Carr C. M., Rosunee S.: https://doi.org/10.1007/s10853-006-7183-6>
19. Textilveredlung 2004, 39, 10.
R., Brückmann R., Kammerer B., Schreiber H.:
20. Eckschlager K.: Chemometrie. Univerzita Karlova v Praze, Karolinum, Praha 1991.
21. Collect. Czech. Chem. Commun. 2010, 75, 1097.
< R., Degano I., Hromadová M., Bulíčková J., Gál M., Valášek M.: https://doi.org/10.1135/cccc2010096>
22. J. Electroanal. Chem. 2005, 584, 77.
H. R., Namazian M., Nasirizadeh N.:
23. Anal. Lett. 2002, 35, 677.
< J., Lu X., Zeng H., Liu H., Lu B.: https://doi.org/10.1081/AL-120003169>
24. Electrochim. Acta 2011, 56, 7421.
< R., Degano I., Ramešová Š., Bulíčková J., Hromadová M., Gál M., Fiedler J., Valášek M.: https://doi.org/10.1016/j.electacta.2011.04.121>
25. J. Electroanal. Chem. 1975, 63, 311.
< J. A., Whitson P. E., Evans D. H.: https://doi.org/10.1016/S0022-0728(75)80303-2>
26. Morrow G. W.: Anodic Oxidation of Oxygen-Containing Compounds in “Organic Electrochemistry” (H. Lund and O. Hammerich, Eds), 4th ed., p. 589. Marcel Dekker Inc., New York 2001.
27. J. Inclusion Phenom. 1998, 31, 57.
L., Trsková R., Colombini M. P., Fuoco R.:
28. Electrochim. Acta 1959, 1, 26.
< J.: https://doi.org/10.1016/0013-4686(59)80006-2>
29. Heyrovský J., Kůta J.: Základy polarografie, pp. 111–118. Nakladatelství Československé akademie věd, Praha 1962.
30. J. Inclusion Phenom. Macrocycl. Chem. 2007, 58, 337.
< C., Xiu Z., Li X., Teng H., Hao C.: https://doi.org/10.1007/s10847-006-9280-1>
31. Bioorg. Med. Chem. Lett. 2007, 17, 5744.
< M. C., Bilia A. R., Di Bari L., Mazzi G., Vincieri F. F.: https://doi.org/10.1016/j.bmcl.2007.08.067>
32. J. Inclusion Phenom. 1993, 15, 131.
A., Salinas F., Gómez M. J., Acedo M. I., Sánchez Peña M.:
33. Spectrochim. Acta, Part A 2005, 62, 372.
M., Yari A., Sharghi H.:
34. J. Inclusion Phenom. 2009, 64, 43.
H., Choi J., Jung S.:
35. J. Chem. Soc., Perkin Trans. 2 1999, 737.
< O., Dufour C., Bret S.: https://doi.org/10.1039/a810017i>
36. J. Chem. Soc., Perkin Trans. 2 1981, 1443.
< R., Wolfbeis O. S., Knierzinger A.: https://doi.org/10.1039/p29810001443>
37. J. Am. Chem. Soc. 1984, 106, 4320.
< M., Adachi T.: https://doi.org/10.1021/ja00328a003>
38. Free Radical Res. 1998, 29, 339.
< L. V. Cornett C., Justesen U., Skibsted L. H., Dragsted L. O.: https://doi.org/10.1080/10715769800300381>
39. J. Chem. Soc., Perkin Trans. 2 2000, 1946.
< G., Ruhling I., Ternes W.: https://doi.org/10.1039/b002323j>