Collect. Czech. Chem. Commun. 2011, 76, 2085-2116
https://doi.org/10.1135/cccc2011179
Published online 2012-02-03 09:45:13

Why do disilanes fail to fluoresce?

Matthew K. MacLeoda and Josef Michla,b,*

a Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám., 2, 166 10 Prague 6, Czech Republic

References

1. Michl J., Bonačić-Koutecký V.: Electronic Aspects of Organic Photochemistry. John Wiley & Sons, New York 1990.
2. Salem L., Dauben W. G., Turro N.: Acc. Chem. Res. 1975, 8, 41.
3. Michl J.: Topics Curr. Chem. 1974, 46, 1.
4. Hirayama F., Lipsky S.: J. Chem. Phys. 1969, 51, 3616. <https://doi.org/10.1063/1.1672560>
5. Michl J., West R.: Acc. Chem. Res. 2000, 33, 821. <https://doi.org/10.1021/ar0001057>
6. Miller R. D., Michl J.: Chem. Rev. 1989, 89, 1359. <https://doi.org/10.1021/cr00096a006>
7. Raymond M. K., Michl J.: Int. J. Quantum Chem. 1999, 72, 361. <https://doi.org/10.1002/(SICI)1097-461X(1999)72:4<361::AID-QUA20>3.0.CO;2-A>
8. Kim Y. R., Lee M., Thorne J. R. G., Hochstrasser R. M., Zeigler J. M.: Chem. Phys. Lett. 1988, 145, 75. <https://doi.org/10.1016/0009-2614(88)85136-4>
9. Schepers T., Michl J.: J. Phys. Org. Chem. 2002, 15, 490. <https://doi.org/10.1002/poc.527>
10. Bande A., Michl J.: Chem. Eur. J. 2009, 15, 8504. <https://doi.org/10.1002/chem.200901521>
11. Michl J.: Acc. Chem. Res. 1990, 23, 127. <https://doi.org/10.1021/ar00173a001>
12. Rooklin D., Schepers T., Raymond-Johansson M., Michl J.: Photochem. Photophys. Sci. 2003, 2, 511. <https://doi.org/10.1039/b302087h>
13. Raymond M. K., Magnera Th. F., Zharov I., West R., Dreczewski B., Nozik A. J., Sprague J. R., Ellingson R. J., Michl J. in: Applied Fluorescence in Chemistry Biology and Medicine (W. Rettig, B. Strehmel, C. Schrader and H. Seifert, Eds). Springer, Berlin 1999.
14. Fogarty H., Casher D., Imhof R., Schepers T., Rooklin D., Michl J.: Pure Appl. Chem. 2003, 75, 999. <https://doi.org/10.1351/pac200375080999>
15. Fogarty H.: Ph. D. Thesis. University of Colorado, Boulder 2005.
16. Plitt H., Balaji V., Michl J.: Chem. Phys. Lett. 1993, 213, 158. <https://doi.org/10.1016/0009-2614(93)85434-P>
17. Mazières S., Raymond M. K., Raabe G., Prodi A., Michl J.: J. Am. Chem. Soc. 1997, 119, 6682. <https://doi.org/10.1021/ja971059h>
18. Olivucci M., Robb M. A., Bernardi F. in: Conformational Analysis of Molecules in Excited States (J. Waluk, Ed.). Wiley–VCH, New York 2000.
19. Karatsu T., Miller R. D., Sooriyakumaran R., Michl J.: J. Am. Chem. Soc. 1989, 111, 1140. <https://doi.org/10.1021/ja00185a060>
20. Ishikawa M., Takaoka T., Kumada M.: J. Organomet. Chem. 1972, 42, 333. <https://doi.org/10.1016/S0022-328X(00)90082-2>
21. Drahak T., Michl J., West R.: J. Am. Chem. Soc. 1979, 101, 5427. <https://doi.org/10.1021/ja00512a059>
22. Moiseev A. G., Leigh W.: J. Organometallics 2007, 26, 2677.
23. Michl J., Balaji V. in: Computational Advances in Organic Chemistry: Molecular Structure and Reactivity (C. Ögretir and I. Csizmadia, Eds). Kluwer Academic Publishers, Dordrecht 1991.
24. Venturini A., Vreven T., Bernardi F., Olivucci M., Robb M. A.: Organometallics 1995, 14, 4953. <https://doi.org/10.1021/om00010a069>
25. McKinley A. J., Karatsu T., Wallraff G. M., Thompson D. P., Miller R. D., Michl J.: J. Am. Chem. Soc. 1991, 113, 2003. <https://doi.org/10.1021/ja00006a022>
26. Casher D. L., Tsuji H., Sano A., Katkevics M., Toshimitsu A., Tamao K., Kubota M., Kobayashi T., Ottosson C. H., David D. E., Michl J.: J. Phys. Chem. A 2003, 107, 3559. <https://doi.org/10.1021/jp027380q>
27. Piqueras M. C., Crespo R., Michl J.: J. Phys. Chem. A 2008, 112, 13095. <https://doi.org/10.1021/jp804677v>
28. Teramae H., Michl J.: Chem. Phys. Lett. 1997, 276, 127.
29. Becke A. D.: J. Chem. Phys. 1993, 98, 5648. <https://doi.org/10.1063/1.464913>
30. Perdew J. P., Ernzerhof M., Burke K.: J. Chem. Phys. 1996, 105, 9982. <https://doi.org/10.1063/1.472933>
31. Adamo C., Barone V.: J. Chem. Phys. 1999, 110, 6158. <https://doi.org/10.1063/1.478522>
32. Becke A. D.: J. Chem. Phys. 1993, 98, 1372. <https://doi.org/10.1063/1.464304>
33. Schafer A., Huber C., Ahlrichs R.: J. Chem. Phys. 1994, 100, 5829. <https://doi.org/10.1063/1.467146>
34. Dunning T. H.: J. Chem. Phys. 1989, 90, 1007. <https://doi.org/10.1063/1.456153>
35. TURBOMOLE, V6.2 2010, A Development of University of Karlsruhe and Forschungs- zentrum Karlsruhe GmbH, 1987–2007. TURBOMOLE GmbH, since 2007, available from http://www.turbomole.com.
36. Hättig C., Weigend F.: J. Chem. Phys. 2000, 113, 5154. <https://doi.org/10.1063/1.1290013>
37. Hättig C. in: Response Theory and Molecular Properties (A Tribute to Jan Linderberg and Poul Jørgensen) (J. R. Sabin, E. Brändas, H. Jensen, Eds.), Advances in Quantum Chemistry, Vol. 50, pp. 37–60. Academic Press, New York 2005.
38. Weigend F., Häser M., Patzelt H., Ahlrichs R.: Chem. Phys. Lett. 1998, 294, 143. <https://doi.org/10.1016/S0009-2614(98)00862-8>
39. Vosko S. H., Wilk L., Nusair M.: Can. J. Phys. 1980, 58, 1200. <https://doi.org/10.1139/p80-159>
40. Treutler O., Ahlrichs R.: J. Chem. Phys. 1994, 102, 346. <https://doi.org/10.1063/1.469408>
41. Furche F., Ahlrichs R.: J. Chem. Phys. 2002, 117, 7433. <https://doi.org/10.1063/1.1508368>
42. Hättig C.: J. Chem. Phys. 2003, 118, 7751. <https://doi.org/10.1063/1.1564061>
43. Köhn A., Hättig C.: J. Chem. Phys. 2003, 119, 5021. <https://doi.org/10.1063/1.1597635>
44. Yanai T., Tew D., Handy N.: Chem. Phys. Lett. 2004, 393, 51. <https://doi.org/10.1016/j.cplett.2004.06.011>
45. Tawada Y., Tsuneda T., Yanagisawa S., Yanai T., Hirao K.: J. Chem. Phys. 2004, 120, 8425. <https://doi.org/10.1063/1.1688752>
46. Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S. J., Windus T. L., Dupuis M., Montgomery J. A.: J. Comput. Chem. 1993, 14, 1347. <https://doi.org/10.1002/jcc.540141112>
47. Papajak E., Leverentz H. R., Zheng J., Truhlar D. G.: J. Chem. Theory Comput. 2009, 5, 1197. <https://doi.org/10.1021/ct800575z>
48. Rappaport D., Furche F.: J. Chem. Phys. 2010, 133, 134105. <https://doi.org/10.1063/1.3484283>
49. Weigend F., Köhn A., Hättig C.: J. Chem. Phys. 2002, 116, 3175. <https://doi.org/10.1063/1.1445115>
50. Reed A. E., Curtiss L. A., Weinhold F.: Chem. Rev. 1988, 88, 899. <https://doi.org/10.1021/cr00088a005>
51. Glendening E. D., Badenhoop J. K., Reed A. E., Carpenter J. E., Bohmann J. A., Morales C. M., Weinhold F.: NBO 5.9. Theoretical Chemistry Institute, University of Wisconsin, Madison 2001.
52. MacLeod M. K.: Ph. D. Thesis. University of Colorado, Boulder 2011.
53. Peach M. J. G., Benfield P., Helgaker T., Tozer D. J.: J. Chem. Phys. 2008, 128, 044118. <https://doi.org/10.1063/1.2831900>
54. Levine B., Ko C., Quenneville J., Martínez T.: J. Mol. Phys. 2006, 104, 1039. <https://doi.org/10.1080/00268970500417762>
55. Reed A. E., Weinhold F.: J. Am. Chem. Soc. 1986, 108, 3586. <https://doi.org/10.1021/ja00273a006>
56. Reed A. E., Schleyer P. v. R.: J. Am. Chem. Soc. 1990, 112, 1434. <https://doi.org/10.1021/ja00160a022>
57. Weinhold F., West R.: Organometallics 2011, 30, 5815. <https://doi.org/10.1021/om200675d>
58. Martínez T. J, Ben-Nun M., Levine R. D.: J. Phys. Chem. 1996, 100, 7884. <https://doi.org/10.1021/jp953105a>