Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2011, 76, 713-742
https://doi.org/10.1135/cccc2011048
Published online 2011-05-04 06:17:53

Parallelized implementation of the CCSD(T) method in MOLCAS using optimized virtual orbitals space and Cholesky decomposed two-electron integrals

Michal Pitoňáka,b,*, Francesco Aquilantec, Pavel Hobzab,d, Pavel Neográdya, Jozef Nogae,f and Miroslav Urbana,g

a Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, SK-842 15 Bratislava, Slovak Republic
b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
c Department of Physical and Analytical Chemistry, Quantum Chemistry, Uppsala University, P.O. Box 518, SE-75120 Uppsala, Sweden
d Department of Physical Chemistry, Palacký University, 771 46 Olomouc, Czech Republic
e Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-842 15 Bratislava, Slovak Republic
f Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36 Bratislava, Slovak Republic
g Slovak University of Technology in Bratislava, Faculty of Materials, Science and Technology in Trnava, Institute of Materials, J. Bottu 24, SK-917 24 Trnava, Slovak Republic

Crossref Cited-by Linking

  • Pedersen Thomas Bondo, Lehtola Susi, Fdez. Galván Ignacio, Lindh Roland: The versatility of the Cholesky decomposition in electronic structure theory. WIREs Comput Mol Sci 2024, 14. <https://doi.org/10.1002/wcms.1692>
  • Nandi Apurba, Nagy Péter R.: Combining state-of-the-art quantum chemistry and machine learning make gold standard potential energy surfaces accessible for medium-sized molecules. Artificial Intelligence Chemistry 2024, 2, 100036. <https://doi.org/10.1016/j.aichem.2023.100036>
  • Lőrincz Balázs D., Nagy Péter R.: Advancing Non-Atom-Centered Basis Methods for More Accurate Interaction Energies: Benchmarks and Large-Scale Applications. J. Phys. Chem. A 2024. <https://doi.org/10.1021/acs.jpca.4c04689>
  • Nagy Péter R.: State-of-the-art local correlation methods enable affordable gold standard quantum chemistry for up to hundreds of atoms. Chem. Sci. 2024, 15, 14556. <https://doi.org/10.1039/D4SC04755A>
  • Damour Yann, Gallo Alejandro, Scemama Anthony: Stochastically accelerated perturbative triples correction in coupled cluster calculations. The Journal of Chemical Physics 2024, 161. <https://doi.org/10.1063/5.0220730>
  • Kállay Mihály, Horváth Réka A., Gyevi-Nagy László, Nagy Péter R.: Basis Set Limit CCSD(T) Energies for Extended Molecules via a Reduced-Cost Explicitly Correlated Approach. J. Chem. Theory Comput. 2023, 19, 174. <https://doi.org/10.1021/acs.jctc.2c01031>
  • Szabó P. Bernát, Csóka József, Kállay Mihály, Nagy Péter R.: Linear-Scaling Local Natural Orbital CCSD(T) Approach for Open-Shell Systems: Algorithms, Benchmarks, and Large-Scale Applications. J. Chem. Theory Comput. 2023, 19, 8166. <https://doi.org/10.1021/acs.jctc.3c00881>
  • Nottoli Tommaso, Gauss Jürgen, Lipparini Filippo: A novel coupled-cluster singles and doubles implementation that combines the exploitation of point-group symmetry and Cholesky decomposition of the two-electron integrals. The Journal of Chemical Physics 2023, 159. <https://doi.org/10.1063/5.0175956>
  • Nagy Péter R., Gyevi-Nagy László, Lőrincz Balázs D., Kállay Mihály: Pursuing the basis set limit of CCSD(T) non-covalent interaction energies for medium-sized complexes: case study on the S66 compilation. Molecular Physics 2023, 121. <https://doi.org/10.1080/00268976.2022.2109526>
  • Gyevi-Nagy László, Kállay Mihály, Nagy Péter R.: Accurate Reduced-Cost CCSD(T) Energies: Parallel Implementation, Benchmarks, and Large-Scale Applications. J. Chem. Theory Comput. 2021, 17, 860. <https://doi.org/10.1021/acs.jctc.0c01077>
  • Kállay Mihály, Horváth Réka A., Gyevi-Nagy László, Nagy Péter R.: Size-consistent explicitly correlated triple excitation correction. The Journal of Chemical Physics 2021, 155. <https://doi.org/10.1063/5.0057426>
  • Nagy Péter R., Gyevi-Nagy László, Kállay Mihály: Basis set truncation corrections for improved frozen natural orbital CCSD(T) energies. Molecular Physics 2021, 119. <https://doi.org/10.1080/00268976.2021.1963495>
  • Gyevi-Nagy László, Kállay Mihály, Nagy Péter R.: Integral-Direct and Parallel Implementation of the CCSD(T) Method: Algorithmic Developments and Large-Scale Applications. J. Chem. Theory Comput. 2020, 16, 366. <https://doi.org/10.1021/acs.jctc.9b00957>
  • Nagy Péter R., Kállay Mihály: Approaching the Basis Set Limit of CCSD(T) Energies for Large Molecules with Local Natural Orbital Coupled-Cluster Methods. J. Chem. Theory Comput. 2019, 15, 5275. <https://doi.org/10.1021/acs.jctc.9b00511>
  • Nagy Péter R., Samu Gyula, Kállay Mihály: Optimization of the Linear-Scaling Local Natural Orbital CCSD(T) Method: Improved Algorithm and Benchmark Applications. J. Chem. Theory Comput. 2018, 14, 4193. <https://doi.org/10.1021/acs.jctc.8b00442>
  • Labanc Daniel, Šulka Martin, Pitoňák Michal, Černušák Ivan, Urban Miroslav, Neogrády Pavel: Benchmark CCSD(T) and DFT study of binding energies in Be7 − 12: in search of reliable DFT functional for beryllium clusters. Molecular Physics 2018, 116, 1259. <https://doi.org/10.1080/00268976.2017.1420259>
  • Kumar Dinesh, Dutta Achintya Kumar, Manohar Prashant Uday: Resolution of the Identity and Cholesky Representation of EOM-MP2 Approximation: Implementation, Accuracy and Efficiency. J Chem Sci 2017, 129, 1611. <https://doi.org/10.1007/s12039-017-1378-z>
  • Parrish Robert M., Burns Lori A., Smith Daniel G. A., Simmonett Andrew C., DePrince A. Eugene, Hohenstein Edward G., Bozkaya Uğur, Sokolov Alexander Yu., Di Remigio Roberto, Richard Ryan M., Gonthier Jérôme F., James Andrew M., McAlexander Harley R., Kumar Ashutosh, Saitow Masaaki, Wang Xiao, Pritchard Benjamin P., Verma Prakash, Schaefer Henry F., Patkowski Konrad, King Rollin A., Valeev Edward F., Evangelista Francesco A., Turney Justin M., Crawford T. Daniel, Sherrill C. David: Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. J. Chem. Theory Comput. 2017, 13, 3185. <https://doi.org/10.1021/acs.jctc.7b00174>
  • Nagy Péter R., Kállay Mihály: Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform. The Journal of Chemical Physics 2017, 146. <https://doi.org/10.1063/1.4984322>
  • Aquilante Francesco, Delcey Mickaël G., Pedersen Thomas Bondo, Fdez. Galván Ignacio, Lindh Roland: Inner projection techniques for the low-cost handling of two-electron integrals in quantum chemistry. Molecular Physics 2017, 115, 2052. <https://doi.org/10.1080/00268976.2017.1284354>
  • Dutta Achintya Kumar, Neese Frank, Izsák Róbert: Speeding up equation of motion coupled cluster theory with the chain of spheres approximation. The Journal of Chemical Physics 2016, 144. <https://doi.org/10.1063/1.4939844>
  • Gidofalvi Gergely, Mazziotti David A.: Molecule-Optimized Basis Sets and Hamiltonians for Accelerated Electronic Structure Calculations of Atoms and Molecules. J. Phys. Chem. A 2014, 118, 495. <https://doi.org/10.1021/jp410191y>
  • Kennedy Matthew R., McDonald Ashley Ringer, DePrince A. Eugene, Marshall Michael S., Podeszwa Rafal, Sherrill C. David: Communication: Resolving the three-body contribution to the lattice energy of crystalline benzene: Benchmark results from coupled-cluster theory. The Journal of Chemical Physics 2014, 140. <https://doi.org/10.1063/1.4869686>
  • Burns Lori A., Marshall Michael S., Sherrill C. David: Appointing silver and bronze standards for noncovalent interactions: A comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches. The Journal of Chemical Physics 2014, 141. <https://doi.org/10.1063/1.4903765>
  • DePrince, A. Eugene, Kennedy Matthew R., Sumpter Bobby G., Sherrill C. David: Density-fitted singles and doubles coupled cluster on graphics processing units. Molecular Physics 2014, 112, 844. <https://doi.org/10.1080/00268976.2013.874599>
  • Vysotskiy Victor P., Boström Jonas, Veryazov Valera: A new module for constrained multi‐fragment geometry optimization in internal coordinates implemented in the MOLCAS package. J Comput Chem 2013, 34, 2657. <https://doi.org/10.1002/jcc.23428>
  • Boström Jonas, Aquilante Francesco, Pedersen Thomas Bondo, Lindh Roland: Analytical Gradients of Hartree–Fock Exchange with Density Fitting Approximations. J. Chem. Theory Comput. 2013, 9, 204. <https://doi.org/10.1021/ct200836x>
  • DePrince A. Eugene, Sherrill C. David: Accuracy and Efficiency of Coupled-Cluster Theory Using Density Fitting/Cholesky Decomposition, Frozen Natural Orbitals, and a t1-Transformed Hamiltonian. J. Chem. Theory Comput. 2013, 9, 2687. <https://doi.org/10.1021/ct400250u>
  • Boström Jonas, Pitoňák Michal, Aquilante Francesco, Neogrády Pavel, Pedersen Thomas Bondo, Lindh Roland: Coupled Cluster and Møller–Plesset Perturbation Theory Calculations of Noncovalent Intermolecular Interactions using Density Fitting with Auxiliary Basis Sets from Cholesky Decompositions. J. Chem. Theory Comput. 2012, 8, 1921. <https://doi.org/10.1021/ct3003018>
  • Hohenstein Edward G., Parrish Robert M., Sherrill C. David, Martínez Todd J.: Communication: Tensor hypercontraction. III. Least-squares tensor hypercontraction for the determination of correlated wavefunctions. The Journal of Chemical Physics 2012, 137. <https://doi.org/10.1063/1.4768241>
  • Šulka Martin, Labanc Daniel, Kováč Martin, Pitoňák Michal, Černušák Ivan, Neogrády Pavel: Ab initio study of the stability of beryllium clusters: accurate calculations for Be2 − 6. J  Phys B At Mol Opt Phys 2012, 45, 085102. <https://doi.org/10.1088/0953-4075/45/8/085102>